Study Material
 Downloaded from Vedantu

FREE LIVE ONLINE

About Vedantu

Vedantu is India's largest LIVE online teaching platform with best teachers from across the country.

Vedantu offers Live Interactive Classes for JEE, NEET, KVPY, NTSE, Olympiads, CBSE, ICSE, IGCSE, IB \& State Boards for Students Studying in 6-12th Grades and Droppers.

Awesome Master Teachers

Anand Prakash
B.Tech, IIT Roorkee Co-Founder, Vedantu

Pulkit Jain
B.Tech, IIT Roorkee Co-Founder, Vedantu

Vamsi Krishna
B.Tech, IIT Bombay

Co-Founder, Vedantu

My mentor is approachable and guides me in my future aspirations as well.
Student - Ayushi

My son loves the sessions and I can already see the change.

Parent - Sreelatha

Hours of LIVE Learning

9,49,900+
Happy Students

95\% Students of Regular Tuitions on Vedantu scored above $\mathbf{9 0 \%}$ in exams!

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

Vedanta

Download Vedantu's App \& Get

(3)
All Study Material with Solution

LIVE
Doubt Solving
自
FREE Tests and Reports

CBSE Class $10{ }^{\text {th }}$ Maths
 Value Based Questions

CHAPTER - 10

CIRCLE

1. There are 3 villages A, B and C such that the distance from A to B is $7 \mathbf{k m}$, from B to C is 5 km and from C to A is 8 km . The gram pradhan wants to dig a well in such a way that the distance from each villages are equal. What should be the location of well? Which value is depicted by gram pradhan?
Ans. A, B, C will lie on the circumference of the circle and location of well will be at the centre of the circle. Social, Honesty, Equality.
2. People of village wants to construct a road nearest to a circular village Rampur. The road cannot pass through the village. But the people wants that road should be at the shortest distance from the center of the village
(i) which road will be the nearest to the center of village?
(ii) which value is depicted by the people of village?

Ans.
i. Tangent of the circle
ii. Economical
3. Four roads have to be constructed by touching village Khanpur in circular shape of radius 1700 m in the following manner.

Savita got contract to construct the roads $A B$ and $C D$ while Vijay got contract to construct $A D$ and $B C$. Prove that $A B+C D=A D+B C$. Which value is depicted by the contractor?

Ans. Gender equality
4. Two roads starting from P are touching a circular path at A and B. Sarita ran from P

Vedantu

 Study Materials

 Study Materials}

NCERT Solutions for Class 6 to 12 (Math \& Science)
Revision Notes for Class 6 to 12 (Math \& Science)
RD Sharma Solutions for Class 6 to 12 Mathematics
RS Aggarwal Solutions for Class 6, 7 \& 10 Mathematics
Important Questions for Class 6 to 12 (Math \& Science)
CBSE Sample Papers for Class 9, 10 \& 12 (Math \&
Science)
Important Formula for Class 6 to 12 Math
CBSE Syllabus for Class 6 to 12
Lakhmir Singh Solutions for Class 9 \& 10
Previous Year Question Paper
CBSE Class 12 Previous Year Question Paper
CBSE Class 10 Previous Year Question Paper
JEE Main \& Advanced Question Paper
NEET Previous Year Question Paper
to $A 10 \mathrm{~km}$ and Ramesh ran from P to B.

(i) If Sarita wins the race than how much distance Ramesh ran?
(ii) Which value is depicted?

Ans. 10 km, Gender equality
5. A farmer wants to divide a sugarcane of 7 ft length between his son and daughter equally. Divide it Geometrically, considering sugarcane as a line of $7 \mathbf{c m}$, using construction.

(i) Find the length of each part.
(ii) Which value is depicted?

Ans. 3.5 ft , Gender equality.

CBSE Class 10 Mathematics

Important Questions

Chapter 10

Circles

1 Marks Questions

1. How many tangents can a circle have?

Ans. A circle can have infinitely many tangents since there are infinitely many points on the circumference of the circle and at each point of it, it has a unique tangent.
2. The perimeter of a sector of a circle of radius $\mathbf{8 ~ c m}$ is 25 m , what is area of sector?
(a) $50 \mathrm{~cm}^{2}$
(b) $42 \mathrm{~cm}^{2}$
(c) $52 \mathrm{~cm}^{2}$
(d) none of these

Ans. (a) $50 \mathrm{~cm}^{2}$
3. In figure given below $P A$ and $P B$ are tangents to the circle drawn from an external point P. CD is a third tangent touching the circle at Q. If $P A=10 \mathrm{~cm}$ and $D Q=2 \mathrm{~cm}$. What is length of $\mathbf{P C}$?
(a) 8 cm
(b) 7 cm
(c) 4 cm
(d) none of these

Ans. (a) 8 cm
4. Tangent of circle intersect the circle
(a) Only one point
(b) Two points
(c) Three points
(d) None of these

Ans. (a) Only one point
5. From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm . The radius of the circle is
(a) 7 cm
(b) 12 cm
(c) 15 cm
(d) 24.5 cm

Ans. (a) 7 cm
6. How many tangents can a circle have?
(a) 1
(b) 2
(c) 0
(d) infinite

Ans. d) infinite
7. If $P A$ and $P B$ are tangents from a point P lying outside the circle such that $P A=10 \mathbf{c m}$ and $\angle A P B=60^{\circ}$. Find length of chord AB.
(a) 10 cm
(b) 20 cm
(c) $\mathbf{3 0} \mathrm{cm}$
(d) 40 cm

Ans. (a) 10 cm
8. A tangent $P Q$ at a point P to a circle of radius 5 cm meets a line through the centre 0 at a point Q, so that $O Q=13 \mathrm{~cm}$, then length of $P Q$ is
(a) 11 cm
(b) 12 cm
(c) 10 cm
(d) None of these

Ans. (b) 12 cm
9. If tangents PA and PB from a point P to a circle with centre O are inclined to each other at angle of 80°, then $\angle P O A$ is equal to
(a) 50°
(b) 60°
(c) 70°
(d) 80°

Ans. (a) 50°
10. How many tangents can a circle have?
(a) 1
(b) 2
(c) 0
(d) infinite

Ans. (d) infinite
11. If $P A$ and $P B$ are tangents from a point P lying outside the circle such that $P A=10 \mathbf{~ c m}$ and $\angle A P B=60^{\circ}$. Find length of chord $A B$.
(a) 10 cm
(b) 20 cm
(c) 30 cm
(d) 40 cm

Ans. (a) 10 cm
12. A tangent $P Q$ at a point P to a circle of radius 5 cm meets a line through the centre O at a point Q, so that $O Q=13 \mathrm{~cm}$, then length of $P Q$ is
(a) 11 cm
(b) 12 cm
(c) 10 cm
(d) None of these

Ans. (b) 12 cm
13. If tangents $P A$ and $P B$ from a point P to a circle with centre O are inclined to each other at angle of 80°, then $\angle P O A$ is equal to
(a) 50°
(b) 60°
(c) 70°
(d) 80°

Ans. (a) 50°
14. The length of tangent drawn to a circle with radius 3 cm from a point 5 cm from the centre of the circle is
(a) 6 cm
(b) 8 cm
(c) 4 cm
(d) 7 cm

Ans. (c) 4 cm
15. A circle touches all the four sides of a quadrilateral $A B C D$ whose sides $A B=6 \mathbf{c m}, B C$ $=7 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm}$, then $\mathrm{AD}=$ \qquad
(a) 2 cm
(b) 3 cm
(c) 5 cm
(d) 6 cm

Ans. (b) 3 cm
16. If a point lies on a circle, then what will be the number of tangents drawn from that point to the circle?
(a) 1
(b) 2
(c) 3
(d) infinite

Ans. (a) 1
17. A quadrilateral $A B C D$ is drawn to circumscribe a circle $I F A B=4 \mathrm{~cm}, C D=7 \mathrm{~cm}, \mathrm{BC}=$ 3 cm , then length of $A D$ is
(a) 7 cm
(b) 2 cm
(c) 8 cm
(d) none of these

Ans. (c) 8 cm
18. A tangent $P Q$ at point P of a circle of radius 12 cm meets a line through the centre 0 to a point Q so that $O Q=20 \mathrm{~cm}$, thenlength of $P Q$ is
(a) 14 cm
(b) 15 cm
(c) 16 cm
(d) 10 cm

Ans. (d) 10 cm
19. A line intersecting a circle in two points is called
(a) tangent
(b) secant
(c) diameter
(d) none of these

Ans. (b) secant
20. The length of tangent from a point A at a distance of 5 cm from the centre of the circle is 4 cm . What will be the radius of circle?
(a) 1 cm
(b) 2 cm
(c) 3 cm
(d) none of these

Ans. (c) 3 cm
21. In the figure given below, $P A$ and $P B$ are tangents to the circle drawn from an external point P. $C D$ is a third tangent touching the circle at Q. If $P B=12 \mathrm{~cm}$ and $C Q=3$ cm , what is the length of PC?
(a) 9 cm
(b) 10 cm
(c) 1 cm
(d) 13 cm

Ans. (a) 9 cm
22. The tangent of a circle makes angle with radius at point of contact
(a) 60°
(b) 30°
(c) 90°
(d) none of these

Ans. (c) 90°
23. If tangent $P A$ and $P B$ from a point P to a circle with centre O are inclined to each other at an angle of $\mathbf{8 0}$, then what is the value of $\angle P O A$?
(a) 30°
(b) 50°
(c) 70°
(d) 90°

Ans. (b) 50°

CBSE Class 10 Mathematics
 Important Questions
 Chapter 10
 Circles

2 Marks Questions

1. Fill in the blanks:
(i) A tangent to a circle intersects it in \qquad point(s).
(ii) A line intersecting a circle in two points is called a \qquad .
(iii) A circle can have \qquad parallel tangents at the most.
(iv) The common point of a tangent to a circle and the circle is called \qquad .

Ans. (i) A tangent to a circle intersects it in one point.
(ii) A line intersecting a circle in two points is called a secant.
(iii) A circle can have two parallel tangents at the most.
(iv) The common point of a tangent to a circle and the circle is called point of contact.
2. A tangent $P Q$ at a point P of a circle of radius 5 cm meets a line through the centre 0 at a point Q so that $O Q=12 \mathrm{~cm}$. Length $P Q$ is:
(A) 12 cm
(B) 13 cm
(C) 8.5 cm
(D) $\sqrt{119} \mathrm{~cm}$

Ans. (D) $\because P Q$ is the tangent and OP is the radius through the point of contact.
$\therefore \angle \mathrm{OPQ}=90^{\circ}$ [The tangent at any point of a circle is \perp to the radius through the point of contact]
\therefore In right triangle OPQ,
$\mathrm{OQ}^{2}=\mathrm{OP}^{2}+\mathrm{PQ}^{2}$ [By Pythagoras theorem]
$\Rightarrow(12)^{2}=(5)^{2}+\mathrm{PQ}^{2}$
$\Rightarrow 144=25+\mathrm{PQ}^{2}$
$\Rightarrow \mathrm{PQ}^{2}=144-25=119$
$\Rightarrow \mathrm{PQ}=\sqrt{119} \mathrm{~cm}$
3. Draw a circle and two lines parallel to a given line such that one is a tangent and the other, a secant to the circle.

Ans.

4. From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm . The radius of the circle is:
(A) 7 cm
(B) $\mathbf{1 2} \mathbf{~ c m}$
(C) 15 cm
(D) 24.5 cm

Ans. (A) $\because \angle \mathrm{OPQ}=90^{\circ}$
[The tangent at any point of a circle is \perp to the radius through the point of contact]
\therefore In right triangle OPQ ,
$\mathrm{OQ}^{2}=\mathrm{OP}^{2}+\mathrm{PQ}^{2}$ [By Pythagoras theorem]
$\Rightarrow(25)^{2}=\mathrm{OP}^{2}+(24)^{2}$
$\Rightarrow 625=\mathrm{OP}^{2}+576$
$\Rightarrow \mathrm{OP}^{2}=625-576=49$
$\Rightarrow \mathrm{OP}=7 \mathrm{~cm}$
5. In figure, if TP and TQ are the two tangents to a circle with centre \mathbf{O} so that $\angle P O Q=$ 110°, then \angle PTQ is equal to:

(A) 60°
(B) 70°
(C) 80°
(D) 90°

Ans. (B) $\angle \mathrm{POQ}=110^{\circ}, \angle \mathrm{OPT}=90^{\circ}$ and $\angle \mathrm{OQT}=90^{\circ}$
[The tangent at any point of a circle is \perp to the radius through the point of contact] In quadrilateral OPTQ,
$\angle \mathrm{POQ}+\angle \mathrm{OPT}+\angle \mathrm{OQT}+\angle \mathrm{PTQ}=360^{\circ}$
[Angle sum property of quadrilateral]
$\Rightarrow 110^{\circ}+90^{\circ}+90^{\circ}+\angle \mathrm{PTQ}=360^{\circ}$
$\Rightarrow 290^{\circ}+\angle \mathrm{PTQ}=360^{\circ}$
$\Rightarrow \angle \mathrm{PTQ}=70^{\circ}$
6. If tangents $P A$ and $P B$ from a point P to a circle with centre O are inclined to each other at angle of 80°, then $\angle \mathrm{POA}$ is equal to:
(A) 50°
(B) 60°
(C) 70°
(D) 80°

Ans. (A) $\because \angle \mathrm{OPQ}=90^{\circ}$
[The tangent at any point of a circle is \perp to the radius through the point of contact]
$\angle \mathrm{OPA}=\frac{1}{2} \angle \mathrm{BPA}[C e n t r e$ lies on the bisector of the angle between the two tangents]
In $\triangle \mathrm{OPA}$,
$\angle \mathrm{OAP}+\angle \mathrm{OPA}+\angle \mathrm{POA}=180^{\circ}$ [Angle sum property of a triangle]
$\Rightarrow 90^{\circ}+40^{\circ}+\angle \mathrm{POA}=180^{\circ}$
$\Rightarrow 130^{\circ}+\angle \mathrm{POA}=180^{\circ}$
$\Rightarrow \angle \mathrm{POA}=50^{\circ}$
7. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Ans. Given: PQ is a diameter of a circle with centre O .
The lines AB and CD are the tangents at P and Q respectively.
To Prove: AB || CD
Proof: Since AB is a tangent to the circle at P and OP is the radius through the point of contact.
$\therefore \angle \mathrm{OPA}=90^{\circ}$
[The tangent at any point of a circle is \perp to the radius through the point of contact]
$\because \mathrm{CD}$ is a tangent to the circle at Q and OQ is the radius through the point of contact.
$\therefore \angle \mathrm{OQD}=90^{\circ}$ \qquad
[The tangent at any point of a circle is \perp to the radius through the point of contact]

From eq. (i) and (ii), $\angle \mathrm{OPA}=\angle \mathrm{OQD}$

But these form a pair of equal alternate angles also,
$\therefore \mathrm{AB} \| \mathrm{CD}$
8. Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.

Ans. We know that the tangent at any point of a circle is perpendicular to the radius through the point of contact and the radius essentially passes through the centre of the circle, therefore the perpendicular at the point of contact to the tangent to a circle passes through the centre.
9. The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm . Find the radius of the circle.

Ans. We know that the tangent at any point of a circle is \perp to the radius through the point of contact.
$\therefore \angle \mathrm{OPA}=90^{\circ}$
$\therefore \mathrm{OA}^{2}=\mathrm{OP}^{2}+\mathrm{AP}^{2}$ [By Pythagoras theorem]
$\Rightarrow(5)^{2}=(\mathrm{OP})^{2}+(4)^{2}$
$\Rightarrow 25=(\mathrm{OP})^{2}+16$
$\Rightarrow \mathrm{OP}^{2}=9$
$\Rightarrow \mathrm{OP}=3 \mathrm{~cm}$
10. Two concentric circles are of radii 5 cm and 3 cm . Find the length of the chord of the larger circle which touches the smaller circle.

Ans. Let O be the common centre of the two concentric circles.

Let $A B$ be a chord of the larger circle which touches the smaller circle at P.

Join OP and OA.

Then, $\angle \mathrm{OPA}=90^{\circ}$
[The tangent at any point of a circle is \qquad to the radius through the point of contact
$\therefore \mathrm{OA}^{2}=\mathrm{OP}^{2}+\mathrm{AP}^{2}$ [By Pythagoras theorem]
$\Rightarrow(5)^{2}=(3)^{2}+\mathrm{AP}^{2}$
$\Rightarrow 25=9+\mathrm{AP}^{2}$
$\Rightarrow \mathrm{AP}^{2}=16$
$\Rightarrow \mathrm{AP}=4 \mathrm{~cm}$

Since the perpendicular from the centre of a circle to a chord bisects the chord, therefore
$\mathrm{AP}=\mathrm{BP}=4 \mathrm{~cm}$
$\Rightarrow \mathrm{AB}=\mathrm{AP}+\mathrm{BP}=\mathrm{AP}+\mathrm{AP}=2 \mathrm{AP}=2 \mathrm{x} 4=8 \mathrm{~cm}$
11. A quadrilateral $A B C D$ is drawn to circumscribe a circle (see figure). Prove that:
$A B+C D=A D+B C$

Ans. We know that the tangents from an external point to a circle are equal.
$\therefore \mathrm{AP}=\mathrm{AS}$ \qquad
$B P=B Q$
$C R=C Q$ \qquad

DR = DS \qquad (iv)

On adding eq. (i), (ii), (iii) and (iv), we get
$(\mathrm{AP}+\mathrm{BP})+(\mathrm{CR}+\mathrm{DR})=(\mathrm{AS}+\mathrm{BQ})+(\mathrm{CQ}+\mathrm{DS})$
$\Rightarrow \mathrm{AB}+\mathrm{CD}=(\mathrm{AS}+\mathrm{DS})+(\mathrm{BQ}+\mathrm{CQ})$
$\Rightarrow \mathrm{AB}+\mathrm{CD}=\mathrm{AD}+\mathrm{BC}$
12. In two concentric circles prove that all chords of the outer circle which touch the inner circle are of equal length.

Ans. AB and CD are two chords of the circle which touch the inner circle at M and N .

Respectively $\therefore O M=O N$
$\Rightarrow A B=C D[\because \mathrm{AB}$ and CD are two chords of larger circle $]$
13. $P A$ and $P B$ are tangents from P to the circle with centre O. At the point M, a tangent is drawn cutting $P A$ at K and $P B$ at N. Prove that $K N=A K+B N$.

Ans. We know that the lengths of the tangents drawn form an external point to a circle are equal.
$\therefore P A=P B$
$K A=K M \ldots \ldots$.
$N B=N M$. \qquad (iii)
(ii) + (iii)
$K A+N B=K M+N M$
$\Rightarrow A K+B N=K M+M N$
$\Rightarrow A K+B N=K N$
14. In the given figure, O is the centre of the circle with radius 5 cm and $A B \| C D$. If $A B=$ 6 cm , find OP.

Ans. $\because O P \perp A B$
\therefore OP bisects AB
$\therefore A P=\frac{1}{2} A B=\frac{1}{2} \times 6=3 \mathrm{~cm}$

From right $\triangle O A P, \quad O A^{2}=O P^{2}+A P^{2}$
$\Rightarrow 5^{2}=O P^{2}+3^{2}$
$\Rightarrow O P=4 \mathrm{~cm}$
15. Prove that the tangents at the end of a chord of a circle make equal angles with the chord.

Ans. In $\triangle A D B$ and $\triangle A D C$,
$B D=D C$
And $\angle A D B=\angle A D C=90^{\circ}$
$\mathrm{AD}=\mathrm{AD}$ [Common]
$\therefore \triangle A D B \cong \triangle A D C$ [SAS]
$\therefore \angle A B D=\angle A C D[B y \mathrm{CPCT}]$
16. Find the locus of the centre of circles which touch a given line at a given point.

Ans. Let APB be the given line and let a circle with centre O touch APB at P. Then $\angle O P B=90^{\circ}$, let there be another circle with centre O^{\prime} which touches the line APB at P .

Thus, $\angle O^{\prime} P B=90^{\circ}$
$\therefore \angle O P B=\angle O^{\prime} P B=90^{\circ}$
17. In the given figure, find the perimeter of $\triangle A B C$, if $\mathbf{A P}=\mathbf{1 0} \mathbf{~ c m}$.

Ans. $\because B C$ touches the circle at R
\because Tangents drawn from external point to the circle are equal.
$\therefore \mathrm{AP}=\mathrm{AQ}, \mathrm{BR}=\mathrm{BP}$

And $C R=C Q$
\therefore Perimeter of $\triangle A B C=A B+B C+A C$
$=A B+(B R+R C)+A C$
$=A B+B P+C Q+A C$
$=A P+A Q=2 A P=2 \times 10=20 \mathrm{~cm}$
18. If $P A$ and $P B$ are tangents drawn from external point P such that $P A=10 \mathrm{~cm}$ and $\angle A P B=60^{\circ}$, find the length of chord AB .

Ans. $\because \angle A P B=60^{\circ}$
$\angle A O B=120^{\circ}$ [O is centre of circle]
$\angle O A B=\angle O B A=30^{\circ}$
$\therefore \angle P A B=60^{\circ}, \angle P B A=60^{\circ}$
$\therefore \triangle P A B$ is equilateral triangle
$\therefore A B=P A=10 \mathrm{~cm}$
19. If $A B, A C$ and $P Q$ are tangents in the given figure and $A B=25 \mathrm{~cm}$, find the perimeter of $\triangle A P Q$.

Ans. Perimeter of $\triangle A P Q=A P+A Q+P Q$
$=A P+A Q+P X+X Q$
$=(A P+P B)+(A Q+Q C)$
$=A B+A C$
$=2 A B=2 \times 25=50 \mathrm{~cm}$
20. Find the locus of the centre of circles which touch a given line at a given point.

Ans. Let APB be the given line and let a circle with centre O touch APB at P. Then $\angle O P B=90^{\circ}$, let there be another circle with centre O^{\prime} which touches the line APB at P .

Thus, $\angle O^{\prime} P B=90^{\circ}$
$\therefore \angle O P B=\angle O^{\prime} P B=90^{\circ}$
21. In the given figure, find the perimeter of $\triangle A B C$, if $\mathbf{A P}=\mathbf{1 0} \mathbf{~ c m}$.

Ans. $\because B C$ touches the circle at R
\because Tangents drawn from external point to the circle are equal.
$\therefore \mathrm{AP}=\mathrm{AQ}, \mathrm{BR}=\mathrm{BP}$

And CR = CQ
\therefore Perimeter of $\triangle A B C=A B+B C+A C$
$=A B+(B R+R C)+A C$
$=A B+B P+C Q+A C$
$=A P+A Q=2 A P=2 \times 10=20 \mathrm{~cm}$
22. If $P A$ and $P B$ are tangents drawn from external point P such that $P A=10 \mathbf{c m}$ and $\angle A P B=60^{\circ}$, find the length of chord $A B$.

Ans. $\because \angle A P B=60^{\circ}$
$\angle A O B=120^{\circ}$ [O is centre of circle]
$\angle O A B=\angle O B A=30^{\circ}$
$\therefore \angle P A B=60^{\circ}, \angle P B A=60^{\circ}$
$\therefore \triangle P A B$ is equilateral triangle
$\therefore A B=P A=10 \mathrm{~cm}$
23. If $A B, A C$ and $P Q$ are tangents in the given figure and $A B=25 \mathrm{~cm}$, find the perimeter of $\triangle A P Q$.

Ans. Perimeter of $\triangle A P Q=A P+A Q+P Q$
$=A P+A Q+P X+X Q$
$=(A P+P B)+(A Q+Q C)$
$=A B+A C$
$=2 A B=2 \times 25=50 \mathrm{~cm}$
24. Find the unknown length x.

Ans. \because PT is tangent to a circle and PAB is a secant.
$\therefore P A \cdot P B=P T^{2}$
$\Rightarrow 5(5+x)=8^{2}$
$\Rightarrow 25+5 x=64$
$\Rightarrow x=\frac{39}{8}=7.8 \mathrm{~cm}$
25. In the given figure, $O D$ is perpendicular to the chord $A B$ of a circle whose centre is
O. If BC is a diameter, find $\frac{C A}{O D}$.

Ans. Since BC is a diameter
$\therefore \angle C A B=90^{\circ}$
Also $\mathrm{OD} \perp \mathrm{AB}$
$\therefore \angle O D B=90^{\circ} \triangle A C B \sim \triangle D O B$
$\left[\because \angle C A B=\angle O D B=90^{\circ}\right]$
$\angle A B C=\angle D B O$ [Common]
$\therefore \frac{C A}{O D}=\frac{C B}{O B}=\frac{2 r}{r}=2$
26. In the given figure, $X P$ and $X Q$ are tangents from X to the circle with centre O. R is a point on the circle such that $A R B$ is a tangent to the circle prove that $X A+A R=X B+B R$.

Ans. In the given figure, XP and XQ are tangents from external point
$\therefore X P=X Q$ (i)
$A R=A P$.
$B R=B Q$
[\because Length of tangents are equal from external point]
$X P=X Q$
$X A+A P=X B+B Q[B y$ (ii) and (iii)]
$X A+A R=X B+B R[B y$ (ii) and (iii)]
27. Prove that the segment joining the points of contact of two parallel tangents, passes through the centre.

Ans. Given two parallel tangents PQ and RS of a circle with centre 0 Draw line OC||RS.
i.e., $\angle P A O+\angle C O A=180^{\circ}$
28. In figure, if $O L=5 \mathrm{~cm}, O A=13 \mathrm{~cm}$, then length of $A B$ is

Ans. $A B=2 A L=2 \sqrt{O A^{2}-O L^{2}}$
$=2 \sqrt{13^{2}-5^{2}}$
$=2 \sqrt{169-25}=2 \sqrt{144}$
$=2 \times 12=24 \mathrm{~cm}$
29. In the given figure, $A B C D$ is a cyclic quadrilateral and $P Q$ is a tangent to the circle at C. If $\mathbf{B D}$ is a diameter, $\angle O C Q=40^{\circ}$ and $\angle A B D=60^{\circ}$, find $\angle B C P$.

Ans. $\because \mathrm{BD}$ is a diameter
$\therefore \angle B C D=90^{\circ}$ [Angle in the semi-circle]
$\therefore \angle B C P=180^{\circ}-90^{\circ}-40^{\circ}=50^{\circ}$
30. Two chords $A B$ and $C D$ of a circle intersect each other at P outside the circle. If $A B=$ $5 \mathrm{~cm}, \mathrm{BP}=3 \mathrm{~cm}$ and $\mathrm{PD}=2 \mathrm{~cm}$, find $C D$.

Ans. \because Two chords AB and CD of a circle intersect each other at P
$\therefore \mathrm{PA} \times \mathrm{PB}=\mathrm{PC} \times \mathrm{PD}$ [length of tangent from P]
$\Rightarrow(A B+P B) \times P B=(P D+P C) P D$
$\Rightarrow(5+3)(3)=(2+x)^{2}$
$\Rightarrow 24=(2+x)^{2}$
$\Rightarrow x=10 \Rightarrow C D=10 \mathrm{~cm}$
31. In the adjoining figure, if $A D, A E$ and $B C$ are tangents to the circle at D, E and F
respectively, then prove that $2 \mathrm{AD}=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$.

Ans. $\mathrm{CD}=\mathrm{CF}, \mathrm{BE}=\mathrm{BF}$
$\Rightarrow C D+B E=C F+B F=B C$
Now $A D=A C+C D=A C+C F$
$A E=A B+B E=A B+B F$
$\therefore A D+A E=A B+A C+B C$
$\Rightarrow 2 A D=A B+B C+A C$
32. In figure, $P A$ and $P B$ are tangents from P to the circle with centre O. R is a point on the circle, prove that $P C+C R=P D+D R$.

Ans. Since length of tangents from an external point to a circle are equal in length
$\therefore P A=P B$
$C A=C R \ldots$ (i)
And DB $=$ DR

Now PA = PB
$\Rightarrow \mathrm{PC}+\mathrm{CA}=\mathrm{PD}+\mathrm{DB}$
$\Rightarrow \mathrm{PC}+\mathrm{CR}=\mathrm{PD}+\mathrm{DR}[\mathrm{By}(\mathrm{i})]$
33. The length of tangents from a point A at distance of 26 cm from the centre of the circle is 10 cm , what will be the radius of the circle?

Ans. Since tangents to a circle is perpendicular to radius through the point of contact
$\therefore \angle O T A=90^{\circ}$
In right $\triangle O T A=90^{\circ}$, we have
$O A^{2}=O T^{2}+A T^{2}$
$\Rightarrow(26)^{2}=O T^{2}+(10)^{2}$
$\Rightarrow O T^{2}=676-100$
$\Rightarrow O T^{2}=576$
$\Rightarrow O T=24$
34. In the given figure, if $T P$ and $T Q$ are the two tangents to a circle with centre 0 so that $\angle P O Q=110^{\circ}$, then find $\angle P T O$.

Ans. Since $\angle P O Q+\angle P T O=180^{\circ}\left[\because \angle O P T=90^{\circ}, \angle O Q T=90^{\circ}\right]$
$\Rightarrow 110^{\circ}+\angle P T Q=180^{\circ}$
$\Rightarrow \angle P T Q=180^{\circ}-110^{\circ}=70^{\circ}$
35. In the figure, given below PA and PB are tangents to the circle drawn from an external point P. CD is thethird tangent touching the circle at Q. If $P B=10 \mathrm{~cm}$ and $C Q=2$ cm , what is the length of PC?

Ans. $\mathrm{PA}=\mathrm{PB}=10 \mathrm{~cm}$
$C Q=C A=2 \mathrm{~cm}$
$\mathrm{PC}=\mathrm{PA}-\mathrm{CA}=10-2=8 \mathrm{~cm}$

CBSE Class 10 Mathematics

Important Questions

Chapter 10

Circles

3 Marks Questions

1. Prove that the angel between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

Ans. $\angle \mathrm{OPA}=90^{\circ}$ \qquad (i)
$\angle \mathrm{OCA}=90^{\circ}$
[Tangent at any point of a circle is \perp to the radius through the point of contact]
\because OAPB is quadrilateral.
$\therefore \angle \mathrm{APB}+\angle \mathrm{AOB}+\angle \mathrm{OAP}+\angle \mathrm{OBP}=360^{\circ}$
[Angle sum property of a quadrilateral]
$\Rightarrow \angle \mathrm{APB}+\angle \mathrm{AOB}+90^{\circ}+90^{\circ}=360^{\circ}$
[From eq. (i) \& (ii)]
$\Rightarrow \angle \mathrm{APB}+\angle \mathrm{AOB}=180^{\circ}$
$\therefore \angle \mathrm{APB}$ and $\angle \mathrm{AOB}$ are supplementary.

2. Prove that the parallelogram circumscribing a circle is a rhombus.

Ans. Given: ABCD is a parallelogram circumscribing a circle.
To Prove: ABCD is a rhombus.

Proof: Since, the tangents from an external point to a circle are equal.
$\therefore \mathrm{AP}=\mathrm{AS}$ \qquad (i)
$B P=B Q$
$C R=C Q$ (iii)

DR = DS \qquad (iv)

On adding eq. (i), (ii), (iii) and (iv), we get
$(\mathrm{AP}+\mathrm{BP})+(\mathrm{CR}+\mathrm{DR})=(\mathrm{AS}+\mathrm{BQ})+(\mathrm{CQ}+\mathrm{DS})$
$\Rightarrow \mathrm{AB}+\mathrm{CD}=(\mathrm{AS}+\mathrm{DS})+(\mathrm{BQ}+\mathrm{CQ})$
$\Rightarrow \mathrm{AB}+\mathrm{CD}=\mathrm{AD}+\mathrm{BC}$
$\Rightarrow \mathrm{AB}+\mathrm{AB}=\mathrm{AD}+\mathrm{AD}$ [Opposite sides of $\|$ gm are equal]
$\Rightarrow 2 \mathrm{AB}=2 \mathrm{AD}$
$\Rightarrow \mathrm{AB}=\mathrm{AD}$
But $\mathrm{AB}=\mathrm{CD}$ and $\mathrm{AD}=\mathrm{BC}$ [Opposite sides of $\| \mathrm{gm}$]
$\therefore A B=B C=C D=A D$
\therefore Parallelogram ABCD is a rhombus.
3. Two tangents TP and TQ are drawn from an external point T with centre O as shown in figure. If they are inclined to each other at an angle of $100^{\mathbf{0}}$, then what is the value of $\angle P O Q$?

Ans. $\therefore T P$ and TQ are tangents and O is the centre of the circle
$\therefore O P \perp P T, O Q \perp Q T$
$\therefore \angle T P O+\angle T Q O=180^{\circ}$
\therefore Quadrilateral OPTQ is cyclic.
$\therefore \angle P T Q+\angle P O Q=180^{\circ}$
$\therefore 100^{\circ}+\angle P O Q=180^{\circ}$
$\therefore \angle P O Q=180^{\circ}-100^{\circ}=80^{\circ}$
4. Two concentric circles are of radii 5 cm and 3 cm ,find the length of the chord of the larger circle which touches the smaller circle.

Ans. $\because P Q$ is the chord of the larger circle which touches the smaller circle at the point L.
Since $P Q$ is tangent at the point L to the smaller circle with centre O.
$\therefore O L \perp P Q$
$\because P Q$ is a chord of the bigger circle and $O L \perp P Q$
$\therefore O L$ bisects PQ
$\therefore P Q=2 P L$
In $\triangle O P L, \quad P L=\sqrt{O P^{2}-O L^{2}}$
$=\sqrt{5^{2}-3^{2}}$
$=\sqrt{25-9}=4$
\therefore Chord PQ $=2$ PL $=8 \mathrm{~cm}$
\therefore Length of chord $\mathrm{PQ}=8 \mathrm{~cm}$
5. A quadrilateral $A B C D$ is drawn to circumscribe a circle. Prove that $A B+C D=A D+B C$.

Ans. \because AP, AS are tangents from a point A (Outside the circle) to the circle.
$\therefore A P=A S$
Similarly, BP = BQ
$C Q=C R$
DR $=\mathrm{DS}$
Now $A B+C D=A P+P B+C R+R D$
$=\mathrm{AS}+\mathrm{BQ}+\mathrm{CQ}+\mathrm{DS}$
$=(\mathrm{AS}+\mathrm{DS})+(\mathrm{BQ}+\mathrm{CQ})$
$=A D+B C$
$\backslash A B+C D=A D+B C$
6. $P Q$ is a chord of length 8 cm of a circle of radius 5 cm . The tangents at P and Q intersect at point T. Find the length TP.

Ans. Join OT.
$\mathrm{TP}=\mathrm{PQ}$ [tangents from T upon the circle]
$\therefore O T \perp P Q$
And OT bisects PQ
$\therefore P R=P Q=4 \mathrm{~cm}$
Now $O R=\sqrt{O P^{2}-P R^{2}}$
$O R=\sqrt{5^{2}-4^{2}}=3 \mathrm{~cm}$
Now $\angle T P R+\angle R P O=90^{\circ}\left[\because \angle \mathrm{TPO}=90^{\circ}\right]$
$=\angle T P R+\angle P T R$
$\therefore \angle R P O=\angle P T R$
$\Delta T R P \sim \Delta T R Q$ [By AA similarity]
$\therefore \frac{T P}{P O}=\frac{R P}{R O}$
$\Rightarrow \frac{T P}{5}=\frac{4}{3}$
$\Rightarrow T P=\frac{20}{3} \mathrm{~cm}$
7. \mathbf{A} circle is touching the side $\mathbf{B C}$ of $\triangle A B C$ at \mathbf{P} and touching AB and AC produced at \mathbf{Q} and \mathbf{R} respectively. Prove that $\mathbf{A Q}=\frac{1}{2}$ (perimeter of $\triangle A B C$).

Ans. We know that the two tangents drawn to a circle from an external point are equal.
$\therefore A Q=A R, B P=B Q, C P=C R$
\therefore Perimeter of $\triangle A B C=A B+B C+A C$
$=A B+B P+P C+A C$
$=A B+B Q+C R+A C \quad[\because B P=B Q, P C=C Q]$
$=A Q+A R=2 A Q=2 A R \quad[\because A Q=A R]$
$=A Q=A R=\frac{1}{2}$ [perimeter of $\left.\triangle A B C\right]$
8. If PA and PB are two tangents drawn from a point P to a circle with centre O touching it at A and B. Prove that $O P$ is the perpendicular bisector of $A B$.

Ans. Let OP intersect AB at a point C , we have to prove that $\mathrm{AC}=\mathrm{CB}$ and $\angle A C P=\angle B C P=90^{\circ}$
$\because P A, P B$ are two tangents from a point P to the circle with centre 0
$\therefore \angle A P O=\angle B P O[\because$ O lies on the bisector of $\angle A P B]$
In two $\triangle S, A C P$ and $B C P$, we have
$\mathrm{AP}=\mathrm{BP}[\because$ tangents from P to the circle are equal]
$\mathrm{PC}=\mathrm{PC}$ [Common]
$\angle A P O=\angle B P O$ [Proved]
$\therefore \triangle A C P \cong \triangle B C P$ [By SAS rule]
$\therefore A C=C B$ [СРСТ]
And $\angle A C P=\angle B C P[C P C T]$

But $\angle A C P+\angle B C P=180^{\circ}$
$\Rightarrow \angle A C P=\angle B C P=90^{\circ}$

Hence, OP is perpendicular bisector of $A B$.
9. In the given figure, $P Q$ is tangent at point R of the circle with centre 0 . If $\angle T R Q=30^{\circ}$, find $m \angle P R S$.

Ans. Given PQ is tangent at point R and $\angle T R Q=30^{\circ}$
$\angle P R Q=180^{\circ}$
$\angle Q R T=30^{\circ}$
$\angle T R S=90^{\circ}[\because$ Tangent of a circle is perpendicular to Radius]
$\therefore \angle P R S=180^{\circ}-120^{\circ}=60^{\circ}$
$\therefore \angle P R S=180^{\circ}-120^{\circ}=60^{\circ}$
10. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Ans. Let the circle touch the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA at the points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$, and S respectively. Join OP, OQ, OR and OS.

Join OA, OB, OC and OD.
Since the two tangents drawn from an external point subtend equal angles at the centre.
$\angle 1=\angle 2, \angle 3=\angle 4, \angle 5=\angle 6, \angle 7=\angle 8$
But $\angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8+=360^{\circ}$
[\because Sum of all angles around a point $=360^{\circ}$]
$\therefore 2[\angle 2+\angle 3+\angle 6+\angle 7]=360^{\circ}$
And $2(\angle 4+\angle 5+\angle 8+\angle 1)=360^{\circ}$
$\Rightarrow(\angle 2+\angle 3)+(\angle 6+\angle 7)=180^{\circ}$
And $(\angle 4+\angle 5)+(\angle 8+\angle 1)=180^{\circ}$
$\Rightarrow \angle A O B+\angle C O D=180^{\circ}$ and $\angle B O C+\angle A O D=180^{\circ}$
11. Prove that parallelogram circumscribing a circle is a rhombus.

Ans. Given ABCD is a parallelogram in which all the sides touch a given circle
To prove: ABCD is a rhombus
Proof:
$\because \mathrm{ABCD}$ is a parallelogram
$\therefore A B=D C$ and $A D=B C$

Again AP, AQ are tangents to the circle from the point A
$\therefore A P=A Q$
Similarly, $B R=B Q$
$C R=C S$
$D P=D S$
$\therefore(A P+D P)+(B R+C R)$
$=A Q+D S+B Q+C S$
$=(A Q+B Q)+(C S+D S)$
$\Rightarrow A D+B C=A B+D C$
$\Rightarrow B C+B C=A B+A B$
$[\because A B=D C, A D=B C]$
$\Rightarrow 2 B C=2 A B$
$\Rightarrow B C=A B$
Hence, parallelogram $A B C D$ is a rhombus.
12. If two tangents are drawn to a circle from an external point then
(i) they subtend equal angles at the centre.
(ii) they are equally inclined to the segment joining the centre to that point.

Ans. Given on a circle C (O,r), two tangents AP and AQ are drawn from an external point A.

To prove:
(i) $\angle A O P=\angle A O Q$
(ii) $\angle O A P=\angle O A P$

Construction: Join AO, PO and QO
Proof: In $\triangle A P Q$ and $\triangle A Q O$,
$\mathrm{AP}=\mathrm{AQ}$ [Length of the tangents drawn from an external point]
$\mathrm{PO}=\mathrm{QO}$ [Radii of the same circle]
$\mathrm{AO}=\mathrm{AO}$ [common]
$\triangle A P O \cong \triangle A Q O$ [By SSS theorem of congruence]
(i) $\angle A O P=\angle A O Q$ [CPCT]
(ii) $\angle O A P=\angle Q A O$ [By CPCT.]
13. Two tangents TP and TQ are drawn to a circle with centre 0 from an external point
T. Prove that $\angle P T Q=2 \angle O P Q$.

Ans. Given A circle with centre O and an external point T and two tangents TP and TQ to the circle, where P, Q are the points of contact.

To Prove: $\angle P T Q=2 \angle O P Q$
Proof: Let $\angle P T Q=\theta$

Since TP, TQ are tangents drawn from point T to the circle.
$T P=T Q$
$\therefore \mathrm{TPQ}$ is an isosceles triangle
$\therefore \angle T P Q=\angle T Q P=\frac{1}{2}\left(180^{\circ}-\theta\right)$
$=90^{\circ}-\frac{\theta}{2}$

Since, TP is a tangent to the circle at point of contact P
$\therefore \angle O P T=90^{\circ}$
$\therefore \angle O P Q=\angle O P T-\angle T P Q$
$=90^{\circ}-\left(90^{\circ}-\frac{1}{2} \theta\right)=\frac{\theta}{2}=\frac{1}{2} \angle P T Q$
Thus, $\angle P T Q=2 \angle O P Q$
14. Prove that the lengths of two tangents drawn from an external point to a circle are equal.

Ans. Given: P is an external point to the circle $\mathrm{C}(\mathrm{O}, \mathrm{r})$.
$P Q$ and $P R$ are two tangents from P to the circle.
To Prove: $P Q=P R$
Construction: Join OP
Proof:
\because A tangent to a circle is perpendicular to the radius through the point of contact
$\therefore \angle O Q P=90^{\circ}=\angle O R P$

Now in right triangles POQ and POR,
$\mathrm{OQ}=\mathrm{OR}$ [Each radius r]
Hypotenuse. OP = Hypotenuse. OP [common]
$\therefore \triangle P O Q \cong \triangle P O R$ [By RHS rule]
$\therefore P Q=P R$
15. The circle of $\triangle A B C$ touches the sides BC, CA and AB at D, E and F respectively. If AB $=\mathrm{AC}$, prove that $\mathrm{BD}=\mathrm{CD}$.

Ans. \because Tangents drawn from an external point to a circle are equal in length
$\therefore \mathrm{AF}=\mathrm{AE}$ [Tangents from A]
$\mathrm{BF}=\mathrm{BD}$ [Tangents from B]
$C D=C E[$ Tangents from C]
Adding (i), (ii)and (iii), we get
$\mathrm{AF}+\mathrm{BF}+\mathrm{CD}=\mathrm{AE}+\mathrm{BD}+\mathrm{CE}$
$\Rightarrow A B+C D=A C+B D$
But $\mathrm{AB}=\mathrm{AC}$ (given)
$C D=B D$
16. \mathbf{A} circle touches the side BC of $\mathrm{a} \triangle A B C$ at a point \mathbf{P} and touches AB and AC when produced at \mathbf{Q} and \mathbf{R} respectively, show that $\mathbf{A Q}=\frac{1}{2}[$ Perimeter of $\triangle A B C]$.

Ans. Since the tangents from an external point to a circle are equal in length,
$\backslash B P=B Q$...(i) [from point B]
$\mathrm{CP}=\mathrm{CR}$...(ii) [from point C]
And AQ = AR ...(iii) [From point A]
From (iii), we have
$A Q=A R$
$\Rightarrow A B+B Q=A C+C R$
$\Rightarrow A B+B P=A C+C P$. (iv) [Using (i) and (ii)]

Now perimeter of $\triangle A B C$
$A B+B C+A C=A B+(B P+P C)+A C$
$=(\mathrm{AB}+\mathrm{BP})+(\mathrm{AC}+\mathrm{PC})$
$=2(\mathrm{AB}+\mathrm{BP})[$ using (iv)]
$=2(A B+B Q)$ [using (i)]
$=2 \mathrm{AQ}$
$\mathrm{PAQ}=\frac{1}{2}($ perimeter of $\triangle A B C)$
17. Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that $\angle P T Q=2 \angle O P Q$.

Ans. Given: A circle with centre O and an external point T and two tangents TP and TQ to the circle, where P and Q are the points of contact.

To prove: $\angle P T Q=2 \angle O P Q$
Proof: Let $\angle P T Q=\theta$
In $\triangle T P Q$, we have
$T P=T Q$
[Length of the tangents drawn from an external point to a circle are equal]
So, TPQ is an isosceles triangle.
$\therefore \angle T P Q=\angle T O P$
In $\triangle T P Q$, we have
$\angle T P Q+\angle T Q P+\angle P T Q=180^{\circ}\left[\because\right.$ Sum of three angles of a Δ is $\left.180^{\circ}\right]$
$\Rightarrow 2 \angle T P Q+Q=180^{\circ}$.
$\Rightarrow 2 \angle T P Q=180^{\circ}-\theta$
$\Rightarrow \angle T P Q=\frac{1}{2}\left(180^{\circ}-\theta\right)=90^{\circ}-\frac{1}{2} \theta$.
But $\angle O P T=90^{\circ}$. \qquad (iii)
[Angle between the tangent and radius of a circle is 90°]

Now $\angle O P Q=\angle O P T-\angle T P Q$
$=90^{\circ}-\left[90^{\circ}-\frac{1}{2} \theta\right]$
$=\frac{1}{2} \theta=\frac{1}{2} \angle P T Q$
$\Rightarrow \angle O P Q=\frac{1}{2} \angle P T Q$
$\Rightarrow \angle P T Q=2 \angle O P Q$
18. Prove that the parallelogram circumscribing a circle is a rhombus

Ans. Given: ABCD be the parallelogram circumscribing a circle with centre O such that the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA touch a circle at $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S respectively.

To prove: ||gm ABCD is a rhombus.
Proof: AP = AS
$B P=B Q$
$C R=C Q$
DR $=\mathrm{DS}$..(iv)
[Tangents drawn from an external point to a circle are equal]
Adding (i), (ii), (iii) and (iv), we get
$\mathrm{AP}+\mathrm{BP}+\mathrm{CR}+\mathrm{DR}=\mathrm{AS}+\mathrm{BQ}+\mathrm{CQ}+\mathrm{DS}$
$\Rightarrow(A P+B P)+(C R+D R)=(A S+D S)+(B Q+C Q)$
$\Rightarrow A B+C D=A D+B C$
19. Prove that the tangents drawn at the ends of a chord of a circle make equal angles with chord.

Ans. Let NM be chord of circle with centre C.
Let tangents at M.N meet at the point O .
Since OM is a tangent
$\therefore O M \perp C M \quad$ i.e. $\angle \mathrm{OMC}=90^{\circ}$
$\because O N$ is a tangent
$\therefore O N \perp C N \quad$ i.e. $\angle O N C=90^{\circ}$
Again in $\triangle C M N, C M=C N=r$
$\therefore \angle C M N=\angle C N M$
$\therefore \angle O M C-\angle C M N=\angle O N C-\angle C N M$
$\Rightarrow \angle O M L=\angle O N L$
Thus, tangents make equal angle with the chord.
20. In the given figure, if $\mathrm{AB}=\mathrm{AC}$, prove that $\mathrm{BE}=\mathrm{EC}$.

Ans. Since tangents from an exterior point A to a circle are equal in length $\therefore A D=A F$

Similarly, tangents from an exterior point B to a circle are equal in length
$\therefore B D=B E$.

Similarly, for C
$C E=C F$

Now $A B=A C$
$\therefore A B-A D=A C-A D$
$\Rightarrow A B-A D=A C-A F$.
$\Rightarrow B D=C F$
$\Rightarrow B E=C F$. \qquad [By (ii)]
$\Rightarrow B E=C E \quad[\because B D=B E, C E=C F]$ [By (iii)]
21. Find the locus of centre of circle with two intersecting lines.

Ans. Let l_{1}, l_{2} be two intersection lines.

Let a circle with centre P touch the two lines l_{1} and l_{2} at M and N respectively.
$\mathrm{PM}=\mathrm{PN}$ [Radii of same circle]
$\therefore \mathrm{P}$ is equidistance from the lines l_{1} and l_{2}
Similarly, centre of any other circle which touch the two intersecting lines l_{1}, l_{2} will be equidistant from l_{1} and l_{2}
$\therefore \mathrm{P}$ lies on l a bisector of the angle between l_{1} and l_{2}
[\because The locus of points equidistant from two intersecting lines is the pair of bisectors of the angle between the lines]

Hence, locus of centre of circles which touch two intersecting lines is the pair of bisectors of the angles between the two lines.
22. In the given figure, a circle is inscribed in a quadrilateral $\mathbf{A B C D}$ in which $\angle B=90^{\circ}$. If $\mathrm{AD}=\mathbf{2 3} \mathrm{cm}, \mathrm{AB}=29 \mathrm{~cm}$ and $\mathrm{DS}=5 \mathrm{~cm}$, find the radius of the circle.

Ans. In the given figure, $O P \perp B C$ and $\mathrm{OQ}^{\wedge} \mathrm{BA}$

Also, $\mathrm{OP}=\mathrm{OQ}=\mathrm{r}$
$\therefore O P B Q$ is a square
$\therefore B P=B Q=r$
But DR = DS = 5 cm ...(i)
$\therefore A R=A D-D R$
$=23-5=18 \mathrm{~cm}$
$A Q=A R=18 \mathrm{~cm}$
$B Q=A B-A Q$
$=20-18=11 \mathrm{~cm}$
$r=11 \mathrm{~cm}$

CBSE Class 10 Mathematics
 Important Questions
 Chapter 10
 Circles

4 Marks Questions

1. In figure, $X Y$ and $X^{\prime} Y$ ' are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting $X Y$ at A and $X^{\prime} Y^{\prime}$ at B. Prove that $\angle A O B$ $=90^{\circ}$.

Ans. Given: In figure, $X Y$ and $X^{\prime} Y^{\prime}$ are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and $\mathrm{X}^{\prime} \mathrm{Y}^{\prime}$ at B .

To Prove: $\angle \mathrm{AOB}=90^{\circ}$

Construction: Join OC

Proof: $\angle \mathrm{OPA}=90^{\circ}$
$\angle \mathrm{OCA}=90^{\circ}$
[Tangent at any point of a circle is \perp to the radius through the point of contact]

In right angled triangles OPA and OCA,
$\mathrm{OA}=\mathrm{OA}$ [Common]

AP = AC [Tangents from an external point to a circle are equal]
$\therefore \quad \triangle \mathrm{OPA} \cong \triangle$ OCA [RHS congruence criterion]
$\therefore \angle \mathrm{OAP}=\angle \mathrm{OAC}$ [By C.P.C.T.]
$\Rightarrow \angle \mathrm{OAC}=\frac{1}{2} \angle \mathrm{PAB}$
Similarly, $\angle \mathrm{OBQ}=\angle \mathrm{OBC}$
$\Rightarrow \angle \mathrm{OBC}=\frac{1}{2} \angle \mathrm{QBA}$
$\because \mathrm{XY} \| \mathrm{X} \mathrm{Y}^{\prime}$ and a transversal AB intersects them.
$\therefore \angle \mathrm{PAB}+\angle \mathrm{QBA}=180^{\circ}$ [Sum of the consecutive interior angles on the same side of the transversal is 180°]
$\Rightarrow \frac{1}{2} \angle \mathrm{PAB}+\frac{1}{2} \angle \mathrm{QBA}=\frac{1}{2} \times 180^{\circ}$
$\Rightarrow \angle \mathrm{OAC}+\angle \mathrm{OBC}=90^{\circ}$
[From eq. (iii) \& (iv)]

In $\triangle \mathrm{AOB}$,
$\angle \mathrm{OAC}+\angle \mathrm{OBC}+\angle \mathrm{AOB}=180^{\circ}$
[Angel sum property of a triangle]
$\Rightarrow 90^{\circ}+\angle \mathrm{AOB}=180^{\circ}$
[From eq. (v)]
$\Rightarrow \angle \mathrm{AOB}=90^{\circ}$
2. A triangle $A B C$ is drawn to circumscribe a circle of radius 4 cm such that the segments $B D$ and $D C$ into which $B C$ is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see figure). Find the sides $A B$ and $A C$.

Ans. Join OE and OF. Also join OA, OB and OC.

Since $B D=8 \mathrm{~cm}$
$\therefore B E=8 \mathrm{~cm}$
[Tangents from an external point to a circle are equal]
Since $C D=6 \mathrm{~cm}$
$\therefore C F=6 \mathrm{~cm}$
[Tangents from an external point to a circle are equal]

Let $\mathrm{AE}=\mathrm{AF}=x$
Since $O D=O E=O F=4 \mathrm{~cm}$
[Radii of a circle are equal]
\therefore Semi-perimeter of $\triangle \mathrm{ABC}$
$=\frac{(x+6)+(x+8)+(6+8)}{2}$
$=(x+14) \mathrm{cm}$
\therefore Area of $\triangle \mathrm{ABC}=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{(x+14)(x+14-14)(x+14-\overline{x+8})(x+14-\overline{x+6})}$
$=\sqrt{(x+14)(x)(6)(8)} \mathrm{cm}^{2}$
Now, Area of $\triangle \mathrm{ABC}=$ Area of $\triangle \mathrm{OBC}+$ Area of $\triangle \mathrm{OCA}+$ Area of $\triangle \mathrm{OAB}$
$\Rightarrow \sqrt{(x+14)(x)(6)(8)}$
$=\frac{(6+8) 4}{2}+\frac{(x+6) 4}{2}+\frac{(x+8) 4}{2}$
$\Rightarrow \sqrt{(x+14)(x)(6)(8)}$
$=28+2 x+12+2 x+16$
$\Rightarrow \sqrt{(x+14)(x)(6)(8)}$
$=4 x+56$
$\Rightarrow \sqrt{(x+14)(x)(6)(8)}=4(x+14)$
Squaring both sides,
$(x+14)(x)(6)(8)=16(x+14)^{2}$
$\Rightarrow 3 x=x+14$
$\Rightarrow 2 x=14$
$\Rightarrow x=7$
$\therefore \mathrm{AB}=x+8=7+8=15 \mathrm{~cm}$

And $\mathrm{AC}=x+6=7+6=13 \mathrm{~cm}$
3. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Ans. Given: ABCD is a quadrilateral circumscribing a circle whose centre is 0 .

To prove: (i) $\angle \mathrm{AOB}+\angle \mathrm{COD}=180^{\circ}$ (ii) $\angle \mathrm{BOC}+\angle \mathrm{AOD}=180^{\circ}$

Construction: Join OP, OQ, OR and OS.

Proof: Since tangents from an external point to a circle are equal.
$\therefore \mathrm{AP}=\mathrm{AS}$,
$B P=B Q$
$C Q=C R$

DR = DS

In $\Delta \mathrm{OBP}$ and $\Delta \mathrm{OBQ}$,
$\mathrm{OP}=\mathrm{OQ}$ [Radii of the same circle]
$\mathrm{OB}=\mathrm{OB}$ [Common]
$B P=B Q$ [From eq. (i)]
$\therefore \Delta \mathrm{OPB} \cong \triangle \mathrm{OBQ}$ [By SSS congruence criterion]
$\therefore \angle 1=\angle 2$ [By C.P.C.T.]
Similarly, $\angle 3=\angle 4, \angle 5=\angle 6, \angle 7=\angle 8$

Since, the sum of all the angles round a point is equal to 360°.
$\therefore \angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=360^{\circ}$
$\Rightarrow \angle 1+\angle 1+\angle 4+\angle 4+\angle 5+\angle 5+\angle 8+\angle 8=360^{\circ}$
$\Rightarrow 2(\angle 1+\angle 4+\angle 5+\angle 8)=360^{\circ}$
$\Rightarrow \angle 1+\angle 4+\angle 5+\angle 8=180^{\circ}$
$\Rightarrow(\angle 1+\angle 5)+(\angle 4+\angle 8)=180^{\circ}$
$\Rightarrow \angle \mathrm{AOB}+\angle \mathrm{COD}=180^{\circ}$
Similarly, we can prove that
$\angle \mathrm{BOC}+\angle \mathrm{AOD}=180^{\circ}$
4. In the given figure $X Y$ and $X^{\prime} Y$ ' are two parallel tangents to a circle with centre O and another tangent $A B$ with point of contact C intersecting $X Y$ at A and $X^{\prime} Y$ ' at B. Prove that $\angle A O B=90^{\circ}$.

Ans. Join OC.
In $\triangle O A P$ and DAOC, we have
$\mathrm{AP}=\mathrm{AC}[\because$ tangents from A to the circle are equal $]$
$\mathrm{AO}=\mathrm{AO}$
$\mathrm{OP}=\mathrm{OC}$ [radius]
$\therefore \triangle O A P \cong \triangle A O C$ [Ву СРСТ]
$\therefore \angle 1=\angle 2$
$\therefore \angle P A C=2 \angle 2$
Similarly, $\angle C B Q=2 \angle 4$
Now, $\angle P A C+\angle C B Q=180^{\circ}\left[\because X Y \| X^{\prime} Y^{\prime}\right]$
$2 \angle 2+2 \angle 4=180^{\circ}$
$\Rightarrow \angle 2+\angle 4=90^{\circ}$
But in $\triangle A O B$,
$\Rightarrow \angle A O B+\angle O A B+\angle A B O=180^{\circ}$
$\Rightarrow \angle A O B+\angle 2+\angle 4=180^{\circ}$
$\Rightarrow \angle A O B+90^{\circ}=180^{\circ}$
$\Rightarrow \angle A O B=90^{\circ}$
5. A triangle $A B C$ is drawn to circumscribe a circle of radius 4 cm such that the segments $B D$ and $D C$ into which $B C$ is divided by the point of contact D are of lengths 8 cm and 6 cm respectively. Find the sides $A B$ and $A C$.

Ans. Let the sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ of $\triangle A B C$ touch the incircle at $\mathrm{D}, \mathrm{E}, \mathrm{F}$ respectively.
Join the centre O of the circle with A, B, C, D, E, F

Since, tangents to a circle from an external point are equal
$\therefore C E=C D=6 \mathrm{~cm}$
$B F=B D=8 \mathrm{~cm}$
$A E=A F=x c m \quad(s a y)$
$O E=O F=O D=4 \mathrm{~cm}$ [Radii of the circle]
Area of $\triangle O A B=\frac{1}{2}(8+x) \times 4$
$=(16+2 x) \mathrm{cm}^{2}$.
Area of $\triangle O B C=\frac{1}{2} \times 14 \times 4=28 \mathrm{~cm}^{2}$.
area $\triangle O C A=\frac{1}{2}(6+x) 4=12+2 x$.
\therefore area $\triangle A B C=16+2 x+12+2 x+28=(4 x+56) \mathrm{cm}^{2}$
Again, perimeter of $\triangle A B C=A C+A B+B C$
$=6+x+(8+x)+(6+8)$
$=28+2 x=2(14+x) \mathrm{cm}$
$S=\frac{2(14+x)}{2}=14+x$
Area of $\triangle A O C=\sqrt{S(s-a)(s-b)(s-c)}$
$=\sqrt{(14+x)(14+x-14)(14+x-6-x)(14+x-8-x)}$
$=\sqrt{(14+x) 48 x}$
$=\sqrt{672 x+48 x^{2}}$.
$\therefore(4 x+56)=\sqrt{672 x+48 \times 2}$ [By 4 and 5]
$\Rightarrow(4 x+56) 2=672 x+48 x^{2}$
$\Rightarrow 16(x+14)^{2}=16\left(42 x+3 x^{2}\right)$
$\Rightarrow(x+14)^{2}=42 x+3 x^{2}$
$\Rightarrow x^{2}+28 x+196=3 x^{2}+42 x$
$(x+14)(x-7)=0$
$x=7, \quad x=-14$
But $x=-14$ is not possible
$\therefore x=7$
6. In the given figure, $P T$ is tangent and $P A B$ is a secant. If $P T=6 \mathrm{~cm}, A B=5 \mathrm{~cm}$. Find the length PA.

Ans. Join OT, OA, OP. Draw OM $\perp \mathrm{AB}$
Let radius of the circle $=r$
$\because O T \perp P T[\because$ OT is radius and PT is a tangent $]$
$\therefore O P^{2}=P T^{2}+O T^{2}$ [From right $\triangle O P T$]
$\Rightarrow O P^{2}=6^{2}+r^{2}$
$\Rightarrow O P^{2}-r^{2}=36$
$\Rightarrow O P^{2}-O A^{2}=36$
(i) $[O A=O T=r]$

Also from right $\triangle O M A$,
$O A^{2}=O M^{2}+A M^{2}$
$\Rightarrow O P^{2}-36=O M^{2}+A M^{2}$
$\Rightarrow O P^{2}-O M^{2}-A M^{2}=36$
$\Rightarrow P M^{2}-A M^{2}=36$
$\Rightarrow(P M+A M)(P M-A M)=36$
$\Rightarrow(P M+A M) P A=36$
$\Rightarrow(P M+M B) P A=36$
$[\because A M=M B, \because O M$ bisects AB$]$
$(P B)(A P)=36$
$\Rightarrow P A(P A+A B)=36$
$\Rightarrow P A^{2}+5 P A-36=0$
$\Rightarrow(P A+9)(P A-4)=0$
$\Rightarrow P A=4$. or $P A=-9$ [It cannot be -ve]
7. From a point \mathbf{P} two tangents are drawn to a circle with centre \mathbf{O}. If $\mathbf{O P}=$ diameter of the circle, show that $\triangle A P B$ is equilateral.

Ans. Join OP.
Suppose OP meets the circle at Q. Join AQ.
We have
i.e., $\mathrm{OP}=$ diameter
$\therefore \mathrm{OQ}+\mathrm{PQ}=$ diameter
$\mathrm{PQ}=$ Diameter $-\operatorname{radius}[\because O Q=r]$
$\therefore \mathrm{PQ}=$ radius

Thus, $\mathrm{OQ}=\mathrm{PQ}=$ radius

Thus, OP is the hypotenuse of right triangle

OAP and Q is the mid-point of OP
$\therefore \mathrm{OA}=\mathrm{AQ}=\mathrm{OQ}$
[\because mid-point of hypotenuse of a right triangle is equidistant from the vertices]
$\Rightarrow \triangle O A Q$ is equilateral
$\Rightarrow \angle A O Q=60^{\circ}$
So, $\angle A P O=30^{\circ} \quad \therefore \angle A P B=2 \angle A P O=60^{\circ}$
Also $P A=P B \Rightarrow \angle P A B=\angle P B A$
But $\angle A P B=60^{\circ} \therefore \angle P A B=\angle P B A=60^{\circ}$
Hence, $\triangle A P B$ is equilateral.

Thank You for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES

FREE Webinars by Expert Teachers

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

