Study Material
 Downloaded from Vedantu

FREE LIVE ONLINE

About Vedantu

Vedantu is India's largest LIVE online teaching platform with best teachers from across the country.

Vedantu offers Live Interactive Classes for JEE, NEET, KVPY, NTSE, Olympiads, CBSE, ICSE, IGCSE, IB \& State Boards for Students Studying in 6-12th Grades and Droppers.

Awesome Master Teachers

Anand Prakash
B.Tech, IIT Roorkee Co-Founder, Vedantu

Pulkit Jain
B.Tech, IIT Roorkee Co-Founder, Vedantu

Vamsi Krishna
B.Tech, IIT Bombay

Co-Founder, Vedantu

My mentor is approachable and guides me in my future aspirations as well.
Student - Ayushi

My son loves the sessions and I can already see the change.

Parent - Sreelatha

Hours of LIVE Learning

9,49,900+
Happy Students

95\% Students of Regular Tuitions on Vedantu scored above $\mathbf{9 0 \%}$ in exams!

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

Vedanta

Download Vedantu's App \& Get

(3)
All Study Material with Solution

LIVE
Doubt Solving
自
FREE Tests and Reports

CBSE Class $10^{\text {th }}$ Maths
Value Based Questions

CHAPTER 7 - COORDINATE GEOMETRY

1. There are two routes to travel from source A to destination B by bus. First bus reaches at B via point C and second bus reaches from A to B directly. If coordinates of A, B and C are $(-2,-3),(2,3)$ and $(3,2)$ respectively then by which bus do you want to travel from A to B (Assume that both buses have same speed.) Which value is depicted in the question?
Ans.
2. By direct route from A to B. Reasoning, Time saving, Economical
3. (3, 3), Enjoyment, Reasoning.
4. Rs. 300, Social awareness
5. Samir, Punctuality, Sincerity.
6. Rectangular, Economical
7. In a sports day celebration, Ram and Shyam are standing at positions A and B whose coordinates are $(2,-2)$ and $(4,8)$ respectively. The teacher asked Geeta to fix the country flag at the mid point of the line joining points A and B. Find the coordinates of the mid point? Which type of value would you infer from the question?
Ans. (3, 3), Enjoyment, Reasoning.
8. To raise social awareness about hazards of smoking, a school decided to start "No Smoking" campaign. 10 students are asked to prepare campaign banners in the shape of triangle as shown in the fig. If cost of 1 cm 2 of banner is Rs. 2 then find the overall cost incurred on such campaign. Which value is depicted in the question?

Ans. Rs. 300, Social awareness

Vedantu

 Study Materials

 Study Materials}

NCERT Solutions for Class 6 to 12 (Math \& Science)
Revision Notes for Class 6 to 12 (Math \& Science)
RD Sharma Solutions for Class 6 to 12 Mathematics
RS Aggarwal Solutions for Class 6, 7 \& 10 Mathematics
Important Questions for Class 6 to 12 (Math \& Science)
CBSE Sample Papers for Class 9, 10 \& 12 (Math \&
Science)
Important Formula for Class 6 to 12 Math
CBSE Syllabus for Class 6 to 12
Lakhmir Singh Solutions for Class 9 \& 10
Previous Year Question Paper
CBSE Class 12 Previous Year Question Paper
CBSE Class 10 Previous Year Question Paper
JEE Main \& Advanced Question Paper
NEET Previous Year Question Paper
4. The coordinates of the houses of Sameer and Rahim are $(7,3)$ and $(4,-3)$ whereas the coordinates of their school is $(2,2)$. If both leaves their houses at the same time in the morning and also reaches school on time then who travel faster? Which value is depicted in the question?
Ans. Samir, Punctuality, Sincerity.
5. There are two types of fields are available as shown in the fig. which type of field will you purchase if both have same cost? Which value is depicted in the question?

Ans. Rectangular, Economical

CBSE Class 10 Mathematics

Important Questions

Chapter 7
Coordinate Geometry

1 Marks Questions

1. The distance between the point $(a, b),(-a,-b)$ is
(a) $2 \sqrt{a^{2}+b^{2}}$
(b) $2 \sqrt{a^{2}-b^{2}}$
(c) $\sqrt{a^{2}+b^{2}}$
(d) $\sqrt{a+b}$

Ans. $2 \sqrt{a^{2}+b^{2}}$
2. The area of triangle whose vertices are $(1,-1),(-4,6)$ and $(-3,-5)$ is
(a) 21
(b) 32
(c) 24
(d) 25

Ans. (c) 24
3. The point $(5,-3)$ lies in
(a) $1^{\text {st }}$ quadrant
(b) $2^{\text {nd }}$ quadrant
(c) $3^{\text {rd }}$ quadrant
(d) $4^{\text {th }}$ quadrant

Ans. d) $4^{\text {th }}$ quadrant
4. The distance between the points $(\operatorname{Cos} \theta, \operatorname{Sin} \theta)$ and $(\operatorname{Sin} \theta,-\operatorname{Cos} \theta)$ is
(a) $\sqrt{3}$
(b) 2
(c) 1
(d) $\sqrt{2}$

Ans. (d) $\sqrt{2}$
5. If $(1,2)(4, y),(x, 6)$ and $(3,5)$ are the vertices of a parallelogram taken in order. Then (x, y) is
(a) $(6,2)$
(b) $(6,3)$
(c) $(6,4)$
(d) $(3,4)$

Ans.(b) (6, 3)
6. The coordinates of the point which divides the join of $(-1,7)$ and $(4,-3)$ in the ratio 2:3 is
(a) $(1,3)$
(b) $(2,3)$
(c) $(3,1)$
(d) $(1,1)$

Ans. (a) (1, 3)
7. The coordinates of a point A, where $A B$ is the diameters of a circle whose centre $(2,-3)$ and B is $(1,4)$ is
(a) $(3,-9)$
(b) $(2,9)$
(c) $(3,-10)$
(d) $(4,5)$

Ans. (c) $(3,-10)$
8. If the area of a quadrilateral $A B C D$ is zero, then the four points A, B, C, D are
(a) Collinear
(b) Not collinear
(c) Nothing can be said
(d) None of these

Ans. (a) Collinear
9. The valve of K if the points $A(2,3), B(4, K)$ and $C(6,-3)$ are collinear is
(a) (1)
(b) (-1)
(c) (2)
(d) (0)

Ans. (d) (0)
10. The mid-point of the line segment joining $(2 a, 4)$ and $(-2,3 b)$ is $(1,2 a+1)$. The values of a and b is
(a) $a=2, b=2$
(b) $a=1, b=3$
(c) $a=2, b=3$
(d) $a=1, b=1$

Ans. (a) $a=2, b=2$
11. Coordinate of \mathbf{A} and B are $(-3, \alpha)$ and $(1, \alpha+4)$. The mid-point of AB is $(-1,1)$. The value of α is
(a) (-1)
(b) (2)
(c) (3)
(d) (1)

Ans. (a) (-1)
12. The distance between $P(a, 7)$ and $Q(1,3)$ is 5 . The value of \mathbf{a} is
(a) $(4,2)$
(b) $(-4,-2)$
(c) $(4,-2)$
(d) $(4,1)$

Ans. (c) (4, -2)
13. On which axis point $(-4,0)$ lie
(a) x-axis
(b) y-axis
(c) both
(d) none of these

Ans. (a) x-axis
14. The distance of the point $(-4,-6)$ from the origin is
(a) $\sqrt{53}$
(b) $2 \sqrt{13}$
(c) $2 \sqrt{12}$
(d) $\sqrt{13}$

Ans. (b) $2 \sqrt{13}$
15. The coordinates of the mid-point of the line segment joining $(-5,4)$ and $(7,-8)$ is
(a) $(1,-2)$
(b) $(1,2)$
(c) $(1,3)$
(d) $(-1,-2)$

Ans. (a) (1, -2)
16. Two vertices of a $\triangle A B C$ are $A(1,-1)$ and $B(5,1)$. If the coordinates of its centroid be $\left(\frac{5}{3}, 1\right)$, then the coordinates of the third vertex \boldsymbol{C} is
(a) $(-1,-3)$
(b) $(1,3)$
(c) $(-1,3)$
(d) $(1,2)$

Ans. (c) (-1, 3)
17. The abscissa of every point on y-axis is
(a) 0
(b) 1
(c) 2
(d) -1

Ans. (a) 0
18. The ordinate of every point on x-axis is
(a) 1
(b) 2
(c) 0
(d) -1

Ans. (c) 0
19. Find the distance between the following pairs of points:
(i) $(2,3),(4,1)$
(ii) $(-5,7),(-1,3)$
(iii) (a, b), (-a, -b)

Ans. (i) Applying Distance Formula to find distance between points $(2,3)$ and $(4,1)$, we get
$d=\sqrt{(4-2)^{2}+(1-3)^{2}}$
$=\sqrt{(2)^{2}+(-2)^{2}}$
$=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$ units
(ii) Applying Distance Formula to find distance between points $(-5,7)$ and $(-1,3)$, we get
$d=\sqrt{[-1-(-5)]^{2}+(3-7)^{2}}$
$=\sqrt{(4)^{2}+(-4)^{2}}$
$=\sqrt{16+16}=\sqrt{32}=4 \sqrt{2}$ units
(iii) Applying Distance Formula to find distance between points (a, b) and (-a, -b), we get
$\mathrm{d}=\sqrt{(-a-a)^{2}+(-b-b)^{2}}$
$=\sqrt{(-2 a)^{2}+(-2 b)^{2}}=\sqrt{4 a^{2}+4 b^{2}}$
$=\sqrt{4\left(a^{2}+b^{2}\right)}=2 \sqrt{a^{2}+b^{2}}$
20. Determine the ratio in which the line $2 x+y-4=0$ divides the line segment joining the points $A(2,-2)$ and $B(3,7)$.

Ans. Let the line $2 x+y-4=0$ divides the line segment joining $A(2,-2)$ and $B(3,7)$ in
the ratio $k: 1$ at point C . Then, the coordinates of C are $\left(\frac{3 k+2}{k+1}, \frac{7 k-2}{k+1}\right)$.

But C lies on $2 x+y-4=0$, therefore
$2\left(\frac{3 k+2}{k+1}\right)+\left(\frac{7 k-2}{k+1}\right)-4=0$
$\Rightarrow 6 k+4+7 k-2-4 k-4=0$
$\Rightarrow 9 k-2=0$
$\Rightarrow k=\frac{2}{9}$
Hence, the required ratio if $2: 9$ internally.
21. Find a relation between x and y if the points $(x, y),(1,2)$ and (7,0) are collinear.

Ans. The points $\mathrm{A}(x, y), \mathrm{B}(1,2)$ and $\mathrm{C}(7,0)$ will be collinear if
Area of triangle $=0$
$\Rightarrow \frac{1}{2}[x(2-0)+1(0-y)+7(y-2)]=0$
$\Rightarrow 2 x-y+7 y-14=0$
$\Rightarrow 2 x+6 y-14=0$
$\Rightarrow x+3 y-7=0$

CBSE Class 10 Mathematics

Important Questions

Chapter 7

Coordinate Geometry

2 Marks Questions

1. Find the distance between the point $A\left(a t_{1}{ }^{2}, 2 a t_{1}\right) B\left(a t_{2}{ }^{2}, 2 a t_{2}\right)$.

Ans. $A B=\sqrt{\left(a t_{2}{ }^{2}-a t_{1}{ }^{2}\right)^{2}+\left(2 a t_{2}{ }^{2}-2 a t_{1}{ }^{2}\right)^{2}}$
$=\sqrt{a^{2}\left(t_{2}-t_{1}\right)^{2}\left(t_{2}+t_{1}\right)^{2}+4 a^{2}\left(t_{2}-t_{1}\right)^{2}}$
$=\sqrt{a^{2}\left(t_{2}-t_{1}\right)^{2}\left(t_{2}+t_{1}\right)^{2}+4 a^{2}\left(t_{2}-t_{1}\right)^{2}}$
$=\sqrt{a^{2}\left(t_{2}-t_{1}\right)^{2}\left[\left(t_{2}+t_{1}\right)^{2}+4\right]}$
$=a\left(t_{2}-t_{1}\right) \sqrt{\left(t_{2}+t_{1}\right)^{2}+4}$
2. Determine if the points $(1,5),(2,3)$ and $(-2,-11)$ collinear.

Ans. Let $A=(1,5), B=(2,3)$ and $C=(-2,-11)$
$A B=\sqrt{(2-1)^{2}+(3-5)^{2}}=\sqrt{5}$
$B C=\sqrt{(-11-3)^{2}+(-2-2)^{2}}=\sqrt{212}$
$A C=\sqrt{(-2-1)^{2}+(-11-5)^{2}}=\sqrt{265}$
$A B+B C \neq A C$
Hence, A, B and C are not collinear.
3. Prove that the points $(3,0),(4,5),(-1,4)$ and $(-2,-1)$ taken in order form a rhombus. Ans. Let $A(3,0), \quad B(4,5), C(-1,4)$ and $\quad \mathrm{D}(-2,-1)$
$A B=\sqrt{(4-3)^{2}+(5-0)^{2}}=\sqrt{26}$
$B C=\sqrt{(-1-4)^{2}+(4-5)^{2}}=\sqrt{26}$
$C D=\sqrt{(-2+1)^{2}+(-1-4)^{2}}=\sqrt{26}$
$D A=\sqrt{(3+2)^{2}+(0+1)^{2}}=\sqrt{26}$

Since AB $=B C=C D=D A$

Hence, ABCD is a rhombus.
4. Show that $(4,4),(3,5),(-1,1)$ are vertices of a right-angled triangle.

Ans. Let A (4, 4), B $(3,5)$ and C $(-1,1)$
$\mathrm{AB}^{2}=(3-4)^{2}+(5-4)^{2}=2$
$A C^{2}=(-1-4)^{2}+(5-4)^{2}=34$
$B C^{2}=(-1-3)^{2}+(1-5)^{2}=32$

Since $A C^{2}=A B^{2}+B C^{2}$

Hence, $A B C$ is a right-angled triangle.
5. Find the coordinates of the points which divide the line segment joining the points $(-2,0)$ and $(0,8)$ in four equal parts.

Ans. Q is the mid-point of $A B$
Coordinate of $Q\left(\frac{-2+0}{2}, \frac{0+8}{2}\right)=(-1,4)$
Coordinate of $P=\left(\frac{-3}{2}, 2\right)$
Coordinate of $R=\left(\frac{-1}{2}, 6\right)$
6. Find the area of the rhombus if its vertices are $(3,0),(4,5),(-1,4)$ and $(-2,-1)$ taken in order.

Ans. Let A $(3,0), \mathrm{B}(4,5), \mathrm{C}(-1,4)$ and $\mathrm{D}(-2,-1)$
$A C=\sqrt{(-1-3)^{2}+(4-0)^{2}}=4 \sqrt{2}$
$B D=\sqrt{(-2-4)^{2}+(-1-5)^{2}}=\sqrt{36+36}=6 \sqrt{2}$
Area of rhombus $=\frac{1}{2} d_{1} \times d_{2}$
$=\frac{1}{2} A C \times B D$
$=\frac{1}{2} \times 4 \sqrt{2} \times 6 \sqrt{2}=24$
7. If the coordinates A and B are $(-2,-2)$ and $(2,-4)$ respectively. Find the coordinates of P such that $A P=\frac{3}{7} A B$ and P lies on the line segment $A B$.

Ans. Coordinate of P are
$(-2,-2)$
A
3:4
$x=\frac{-2 \times 4+2 \times 3}{7}=\frac{-8+6}{7}=\frac{-2}{7}$
$y=\frac{-2 \times 4+(-4) \times(3)}{7}=\frac{-8-12}{7}=\frac{-20}{7}$
8. In what ratio is the line segment joining the points $(-2,3)$ and $(3,7)$ divided by the y axis?

Ans. Let A $(-2,-3)$ and $B(3,7)$
$\mathrm{P}(0, \mathrm{y})$ and ratio be $\mathrm{K}: 1$

$(-2,-3)$	$P(0, y)$	$(3,7)$
A	$\mathrm{K}: 1$	B

Coordinate of P are $\left(\frac{3 k-2}{k+1}, \frac{7 k-3}{k+1}\right)$
$\frac{3 k-2}{k+1}=0$
$\Rightarrow k=\frac{2}{3}$ or $2: 3$
9. For what value of P are the points $(2,1)(p,-1)$ and $(-1,3)$ collinear?

Ans. For collinear
$\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=0$
$\Rightarrow \frac{1}{2}[2(-1-3)+p(3-1)+(-1)(1+1)]=0$
$\Rightarrow-5+p=0$
$\Rightarrow p=5$
10. Find the third vertex of a Δ, if two of its vertices are at $(1,2)$ and $(3,5)$ and the centroid is at the origin.

Ans. Let third vertex of the Δ be (x, y)
$\frac{x+1+3}{3}=0, \quad \frac{y+2+5}{3}=0$
$x=-4, y=-7$
Hence, third vertex is $(-4,-7)$.
11. In a seating arrangement of desks in a classroom, three students are seated at $A(3,1), B(6,4)$ and $C(8,6)$ respectively. Are they seated in line?

Ans. $A B=\sqrt{(6-3)^{2}+(4-1)^{2}}=\sqrt{18}=3 \sqrt{2}$
$B C=\sqrt{(8-6)^{2}+(6-4)^{2}}=\sqrt{4+4}=2 \sqrt{2}$
$A C=\sqrt{(8-3)^{2}+(6-1)^{2}}=\sqrt{25+25}=5 \sqrt{2}$
$A B+B C=A C$
Hence, they seated in a line.
12. Show that $(1,1),(-1,-1),(\sqrt{3}, \sqrt{3})$ are the vertices of an equilateral triangle.

Ans. Let $A(1,1), B(-1,-1), \quad C(-\sqrt{3}, \sqrt{3})$
$A B=\sqrt{(-1-1)^{2}+(-1-1)^{2}}=\sqrt{8}$
$B C=\sqrt{(-\sqrt{3}+1) 2+(\sqrt{3}+1) 2}=\sqrt{8}$
$C A=\sqrt{(1+\sqrt{3})^{2}+(1-\sqrt{3})^{2}}=\sqrt{8}$
Since $\mathrm{AB}=\mathrm{BC}=\mathrm{CA}$, then $\triangle A B C$ is equilateral triangle.
13. Find the distance between the points $(0,0)$ and $(36,15)$.Also, find the distance between towns A and B if town B is located at 36 km east and15 km north of town A.

Ans. Applying Distance Formula to find distance between points $(0,0)$ and $(36,15)$, we get
$d=\sqrt{(36-0)^{2}+(15-0)^{2}}$
$=\sqrt{(36)^{2}+(15)^{2}}$
$=\sqrt{1296+225}=\sqrt{1521}=39$
Town B is located at 36 km east and 15 km north of town A. So, the location of town A and B can be shown as:

Clearly, the coordinates of point A are $(0,0)$ and coordinates of point B are $(36,15)$.
To find the distance between them, we use Distance formula:
$d=\sqrt{[36-0]^{2}+(15-0)^{2}}$
$=\sqrt{(36)^{2}+(15)^{2}}$
$=\sqrt{1296+225}=\sqrt{1521}=39 \mathrm{~km}$
14. Determine if the points $(1,5),(2,3)$ and $(-2,-11)$ are collinear.

Ans. Let $\mathrm{A}=(1,5), \mathrm{B}=(2,3)$ and $\mathrm{C}=(-2,-11)$

Using Distance Formula to find distance AB, BC and CA.
$A B=\sqrt{[2-1]^{2}+(3-5)^{2}}$
$=\sqrt{(1)^{2}+(-2)^{2}}$
$=\sqrt{1+4}=\sqrt{5}$
$B C=\sqrt{[-2-2]^{2}+(-11-3)^{2}}$
$=\sqrt{(-4)^{2}+(-14)^{2}}$
$=\sqrt{16+196}=\sqrt{212}=2 \sqrt{53}$
$C A=\sqrt{[-2-1]^{2}+(-11-5)^{2}}$
$=\sqrt{(-3)^{2}+(-16)^{2}}$
$=\sqrt{9+256}=\sqrt{265}$

Since $A B+A C \neq B C, B C+A C \neq A B$ and $A C \neq B C$.

Therefore, the points A, B and C are not collinear.
15. Check whether ($5,-2$), $(6,4)$ and $(7,-2)$ are the vertices of an isosceles triangle.

Ans. Let $\mathrm{A}=(5,-2), \mathrm{B}=(6,4)$ and $\mathrm{C}=(7,-2)$

Using Distance Formula to find distances AB, BC and CA .
$A B=\sqrt{[6-5]^{2}+[4-(-2)]^{2}}$
$=\sqrt{(1)^{2}+(6)^{2}}$
$=\sqrt{1+36}=\sqrt{37}$
$B C=\sqrt{[7-6]^{2}+(-2-4)^{2}}$
$=\sqrt{(1)^{2}+(-6)^{2}}$
$=\sqrt{1+36}=\sqrt{37}$
$C A=\sqrt{[7-5]^{2}+[-2-(-2)]^{2}}$
$=\sqrt{(2)^{2}+(0)^{2}}$
$=\sqrt{4+0}=\sqrt{4}=2$
Since $A B=B C$.
Therefore, A, B and C are vertices of an isosceles triangle.
16. Find the values of y for which the distance between the points $P(2,-3)$ and $Q(10, y)$ is 10 units.

Ans. Using Distance formula, we have
$10=\sqrt{(2-10)^{2}+(-3-y)^{2}}$
$\Rightarrow 10=\sqrt{(-8)^{2}+9+y^{2}+6 y}$
$\Rightarrow 10=\sqrt{64+9+y^{2}+6 y}$
Squaring both sides, we get
$100=73+y^{2}+6 y$
$\Rightarrow y^{2}+6 y-27=0$
Solving this Quadratic equation by factorization, we can write
$\Rightarrow y^{2}+9 y-3 y-27=0$
$\Rightarrow \mathrm{y}(\mathrm{y}+9)-3(\mathrm{y}+9)=0$
$\Rightarrow(y+9)(y-3)=0$
$\Rightarrow y=3,-9$
17. Find a relation between x and y such that the point (x, y)is equidistant from the point $(3,6)$ and $(-3,4)$.

Ans. It is given that (x, y) is equidistant from $(3,6)$ and $(-3,4)$.
Using Distance formula, we can write
$\sqrt{(x-3)^{2}+(y-6)^{2}}$
$=\sqrt{[x-(-3)]^{2}+(y-4)^{2}}$
$\Rightarrow \sqrt{x^{2}+9-6 x+y^{2}+36-12 y}$
$=\sqrt{x^{2}+9+6 x+y^{2}+16-8 y}$
Squaring both sides, we get
$\Rightarrow x^{2}+9-6 x+y^{2}+36-12 y$
$=x^{2}+9+6 x+y^{2}+16-8 y$
$\Rightarrow-6 x-12 y+45$
$=6 x-8 y+25$
$\Rightarrow 12 \mathrm{x}+4 \mathrm{y}=20$
$\Rightarrow 3 x+y=5$
18. Find the coordinates of the point which divides the join of $(-1,7)$ and $(4,-3)$ in the
ratio 2:3.

Ans. Let $\mathrm{x}_{1}=-1, \mathrm{x}_{2}=4, \mathrm{y}_{1}=7$ and $\mathrm{y}_{2}=-3, \mathrm{~m}_{1}=2$ and $\mathrm{m}_{2}=3$

Using Section Formula to find coordinates of point which divides join of $(-1,7)$ and $(4,-3)$ in the ratio $2: 3$, we get
$x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}$
$=\frac{2 \times 4+3 \times(-1)}{2+3}=\frac{8-3}{5}=\frac{5}{5}=1$
$y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}$
$=\frac{2 \times(-3)+3 \times 7}{2+3}=\frac{-6+21}{5}=\frac{15}{5}=3$
Therefore, the coordinates of point are $(1,3)$ which divides join of $(-1,7)$ and $(4,-3)$ in the ratio 2:3.
19. Find the ratio in which the line segment joining the points $(-3,10)$ and $(6,-8)$ is divided by $(-1,6)$.

Ans. Let $(-1,6)$ divides line segment joining the points $(-3,10)$ and $(6,-8)$ in $\mathrm{k}: 1$.
Using Section formula, we get
$-1=\frac{(-3) \times 1+6 \times k}{k+1}$
$\Rightarrow-\mathrm{k}-1=(-3+6 \mathrm{k})$
$\Rightarrow-7 \mathrm{k}=-2$
$\Rightarrow \mathrm{k}=\frac{2}{7}$

Therefore, the ratio is $\frac{2}{7}: 1$ which is equivalent to 2:7.

Therefore, $(-1,6)$ divides line segment joining the points $(-3,10)$ and $(6,-8)$ in 2:7.
20. Find the ratio in which the line segment joining $A(1,-5)$ and $B(-4,5)$ is divided by the x-axis. Also find the coordinates of the point of division.

Ans. Let the coordinates of point of division be ($\mathrm{x}, 0$) and suppose it divides line segment joining $\mathrm{A}(1,-5)$ and $\mathrm{B}(-4,5)$ in $\mathrm{k}: 1$.

According to Section formula, we get
$x=\frac{1 \times 1+(-4) \times k}{k+1}=\frac{1-4 k}{k+1}$ and $0=\frac{(-5) \times 1+5 k}{k+1} \ldots$
$0=\frac{(-5) \times 1+5 k}{k+1}$
$\Rightarrow 5=5 \mathrm{k}$
$\Rightarrow \mathrm{k}=1$

Putting value of k in (1), we get
$x=\frac{1 \times 1+(-4) \times 1}{1+1}=\frac{1-4}{2}=\frac{-3}{2}$
Therefore, point $\left(\frac{-3}{2}, 0\right)$ on x-axis divides line segment joining $A(1,-5)$ and $B(-4,5)$ in 1:1.
21. If $(1,2),(4, y),(x, 6)$ and $(3,5)$ are the vertices of a parallelogram taken in order, find x and y.

Ans. Let $\mathrm{A}=(1,2), \mathrm{B}=(4, \mathrm{y}), \mathrm{C}=(\mathrm{x}, 6)$ and $\mathrm{D}=(3,5)$
We know that diagonals of parallelogram bisect each other. It means that coordinates of midpoint of diagonal AC would be same as coordinates of midpoint of diagonal BD.

Using Section formula, the coordinates of midpoint of AC are:

$$
\frac{1+x}{2}, \frac{2+6}{2}=\frac{1+x}{2}, 4
$$

Using Section formula, the coordinates of midpoint of BD are:
$\frac{4+3}{2}, \frac{5+y}{2}=\frac{7}{2}, \frac{5+y}{2}$
According to condition (1), we have
$\frac{1+x}{2}=\frac{7}{2}$
$\Rightarrow(1+x)=7$
$\Rightarrow \mathrm{x}=6$

Again, according to condition (1), we also have
$4=\frac{5+y}{2}$
$\Rightarrow 8=5+y$
$\Rightarrow \mathrm{y}=3$
Therefore, $x=6$ and $y=3$
22. Find the coordinates of a point A, where $A B$ is the diameter of a circle whose centre is $(2,-3)$ and B is $(1,4)$.

Ans. We want to find coordinates of point $\mathrm{A} . \mathrm{AB}$ is the diameter and coordinates of center are $(2,-3)$ and, coordinates of point B are $(1,4)$.

Let coordinates of point A are (x, y). Using section formula, we get
$2=\frac{x+1}{2}$
$\Rightarrow 4=x+1$
$\Rightarrow \mathrm{x}=3$

Using section formula, we get
$-3=\frac{4+y}{2}$
$\Rightarrow-6=4+y$
$\Rightarrow \mathrm{y}=-10$
Therefore, Coordinates of point A are (3, -10).
23. Find the area of a rhombus if its vertices are $(3,0),(4,5),(-1,4)$ and $(-2,-1)$ taken in order. $\{$ Hint: Area of a rhombus $=1 / 2$ (product of its diagonals) \}

Ans. Let $\mathrm{A}=(3,0), \mathrm{B}=(4,5), \mathrm{C}=(-1,4)$ and $\mathrm{D}=(-2,-1)$
Using Distance Formula to find length of diagonal AC, we get

$$
\begin{aligned}
& A C=\sqrt{[3-(-1)]^{2}+(0-4)^{2}} \\
& =\sqrt{4^{2}+(-4)^{2}} \\
& =\sqrt{16+16}=\sqrt{32}=4 \sqrt{2}
\end{aligned}
$$

Using Distance Formula to find length of diagonal BD, we get

$$
\begin{aligned}
& B D=\sqrt{[4-(-2)]^{2}+[5-(-1)]^{2}} \\
& =\sqrt{6^{2}+6^{2}} \\
& =\sqrt{36+36}=\sqrt{72}=6 \sqrt{2}
\end{aligned}
$$

\because Area of rhombus $=1 / 2$ (product of its diagonals) $=\frac{1}{2} \times A C \times B D$
$=\frac{1}{2} \times 4 \sqrt{2} \times 6 \sqrt{2}$
$=24$ sq. units
24. Find the area of the triangle whose vertices are:
(i) $(2,3),(-1,0),(2,-4)$
(ii) $(-5,-1),(3,-5),(5,2)$

Ans. (i) (2, 3), (-1, 0), (2, -4)
Area of Triangle $=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$=1 / 2[2\{0-(-4)\}-1(-4-3)+2(3-0)]$
$=1 / 2[2(0+4)-1(-7)+2(3)]=1 / 2(8+7+6)=\frac{21}{2}$ sq. units
(ii) $(-5,-1),(3,-5),(5,2)$

Area of Triangle $=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$=1 / 2[-5(-5-2)+3\{2-(-1)\}+5\{-1-(-5)\}]$
$=1 / 2[-5(-7)+3(3)+5(4)]$
$=1 / 2(35+9+20)$
$=1 / 2(64)$
$=32$ sq. units

CBSE Class 10 Mathematics

Important Questions

Chapter 7
Coordinate Geometry

3 Marks Questions

1. If $A(-3,2), B(a, b)$ and $C(-1,4)$ are the vertices of a isosceles triangle, show that $a+b=1$, if $\mathbf{A B}=\mathbf{B C}$.

Ans. $A B=B C$ (Given)
$\Rightarrow A B^{2}=B C^{2}$
$\Rightarrow(a+3)^{2}+(b-2)^{2}=(-1-a)^{2}+(4-b)^{2}$
$\Rightarrow a^{2}+9+6 a+b^{2}+4-4 b=1+a^{2}+2 a+16+b^{2}-8 b$
$\Rightarrow 4 a+4 b=4$
$\Rightarrow a+b=1$
2. Find the value of \mathbf{P} if the point $A(0,2)$ is equidistant from $(3, p)$ and $(p, 3)$.

Ans. Let $B(3, p)$ and $C(p, 3)$
$\mathrm{AB}=\mathrm{AC}$ (Given)
$\Rightarrow A B^{2}=A C^{2}$
$\Rightarrow(0-3) 2+(2-p)^{2}=(p-0)^{2}+(3-2)^{2}$
$\Rightarrow 9+4+p^{2}-4 p=p^{2}+1$
$\Rightarrow-4 p=-12$
$\Rightarrow p=3$
3. Find the centroid of the triangle whose vertices are $(4,-8)(-9,7)$ and $(8,13)$.

Ans. Let (x, y) be the coordinate of centroid
$x=\frac{x_{1}+x_{2}+x_{3}}{3}$
$=\frac{4-9+8}{3}=\frac{3}{3}=1$
$y=\frac{y_{1}+y_{2}+y_{3}}{3}$
$=\frac{-8+7+13}{3}=\frac{20-8}{3}=4$
Coordinate of centroid is $(1,4)$
4. Prove that in a right-angled triangle, the mid-point of the hypotenuse is equidistant from the vertices.

Ans. Let $A(2 a, 0), B(0,2 b)$ and $O(0,0)$ are the vertices of right-angled triangle Coordinate of $C\left(\frac{2 a+0}{2}, \frac{0+2 b}{2}\right)$
i.e. (a, b)

$$
\begin{aligned}
& O C=\sqrt{a^{2}+b^{2}} \\
& A C=\sqrt{a^{2}+b^{2}} \\
& B C=\sqrt{a^{2}+b^{2}}
\end{aligned}
$$

Hence, C is Equidistant from the vertices.

5. Prove that diagonals of a rectangle bisect each other and are equal.

Ans. Let ABCD be a rectangle take A as origin the vertices of a rectangle are $A(0,0), B(a, 0), C(a, b), D(o, b)$

$A C=\sqrt{(a-0)^{2}+(b-0)^{2}}=\sqrt{a^{2}+b^{2}}$
$B D=\sqrt{(0-a)^{2}+(0-b)^{2}}=\sqrt{a^{2}+b^{2}}$
$A C=B D$
Mid-point of AC $=\left(\frac{0+a}{2}, \frac{0+b}{2}\right)=\left(\frac{a}{2}, \frac{b}{2}\right)$
Mid-point of $\mathrm{BD}=\left(\frac{0+a}{2}, \frac{0+b}{2}\right)=\left(\frac{a}{2}, \frac{b}{2}\right)$
Mid-point of $A C=$ Mid-point of $B C$

Hence proved.
6. The line joining the points $(2,-1)$ and $(5,-6)$ is bisected at P. If P lies on the line $2 x+4 y+k=0$, find the value of \boldsymbol{k}.

A	$\mathrm{P}(\mathrm{x}, \mathrm{y})$	B
$(2,-1)$	$(1: 1)$	$(5,-6)$

Ans. Coordinate of $P=\left(\frac{2+5}{2}, \frac{-1-6}{2}\right)=\left(\frac{7}{2}, \frac{-7}{2}\right)$
P lies on equation $2 x+4 y+k=0$
$\therefore \quad 2\left(\frac{7}{2}\right)+4\left(\frac{-7}{2}\right)+k=0$
$\Rightarrow \quad 7-14+k=0$
$\Rightarrow \quad k=7$
7. Show that the points $(a, b+c),(b, c+a)$ and $(c, a+b)$ are collinear.

Ans. For collinear
$x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)=0$
$=a(c+a-a-b)+b(a+b-b-c)+c(b+c-c-a)$
$=a(c-b)+b(a-c)+c(b-a)$
$=a c-a b+b a-b c+c b-c a$
$=0$
8. The length of a line segment is 10 . If one end point is $(2,-3)$ and the abscissa of the second end point is 10 , show that its ordinate is either 3 or -9.

Ans. Let A $(2,-3)$ be the first end point and B $(10, y)$ be the second end point.

$$
\begin{aligned}
& (10-2)^{2}+(y+3)^{2}=(10)^{2} \\
& \therefore A B=10 \\
& \Rightarrow \sqrt{(10-2)^{2}+(y+3)^{2}}=10 \\
& \Rightarrow 8^{2}+y^{2}+9+6 y=100 \\
& \Rightarrow 64+y^{2}+9+6 y=100 \\
& \Rightarrow y^{2}+6 y-27=0 \\
& \Rightarrow y^{2}+9 y-3 y-27=0 \\
& \Rightarrow y(y+9)-3(y+9)=0 \\
& \Rightarrow(y+9)(y-3)=0 \\
& \Rightarrow y=-9 \text { or } y=3
\end{aligned}
$$

9. Using section formula, show that the points $(-1,2)(5,0)$ and (2,1) are collinear.

Ans. If points $A(-1,2), B(5,0)$ and $(2,1)$ are collinear, then one point divides the join of other two in the same ratio. Let $C(2,1)$ divides the join of $A(-1,2)$ and $B(5,0)$ in the ratio $\mathrm{K}: 1$

A	$C(x, y)$	B
$(-1,2)$	$(K: 1)$	$(5,0)$

$\therefore 2=\frac{5 K-1}{K+1}$ and $1=\frac{0+2}{K+1}$
$2 K+2=5 K-1$ and $K+1=2$
$\mathrm{K}=1$
$\mathrm{K}=1$

Hence Proved.
10. Find the relation between x and y such that the point (x, y) is equidistant from the
points $(7,1)$ and $(3,5)$.
Ans. Let $P(x, y)$ be equidistant from the points $A(7,1)$ and $B(3,5)$
$A P=B P$ (Given)
$\Rightarrow A P^{2}=B P^{2}$
$\Rightarrow(x-7)^{2}+(y-1)^{2}=(x-3)^{2}+(y-5)^{2}$
$\Rightarrow x^{2}+49-14 x+y^{2}+1-2 y=x^{2}+9-6 x+y^{2}+25-10 y$
$\Rightarrow x-y=2$
11. Determine the ratio in which the line $2 x+y-4=0$ divides the line segment joining the points $A(2,2)$ and $B(3,7)$.

Ans. Let the ratio be $\mathrm{K}: 1$
Coordinate of P are $\left(\frac{3 K+2}{K+1}, \frac{7 K-2}{K+1}\right)$
P lies on the line $2 x+y-4=0$
$\Rightarrow 2\left(\frac{3 K+2}{K+1}\right)+\frac{7 K-2}{K+1}-\frac{4}{1}=0$
$\Rightarrow 6 K+4+7 K-2-4 K-4=0$
$\Rightarrow 9 K-2=0$
$\Rightarrow K=\frac{2}{9}$ or $2: 9$
12. Show that the points $A(5,6), B(1,5), C(2,1)$ and $D(6,2)$ are the vertices of a square.

Ans. $A B=\sqrt{(1-5)^{2}+(5-6)^{2}}=\sqrt{17}$
$B C=\sqrt{(2-1)^{2}+(1-5)^{2}}=\sqrt{17}$
$C D=\sqrt{(6-2)^{2}+(1-2)^{2}}=\sqrt{17}$
$D A=\sqrt{(5-6)^{2}+(6-2)^{2}}=\sqrt{17}$
Diagonal $A C=\sqrt{(2-5)^{2}+(1-6)^{2}}=\sqrt{34}$
Diagonal $B D=\sqrt{(6-1)^{2}+(2-5)^{2}}=\sqrt{34}$
Hence proved.
13. If the point $P(x, y)$ is equidistant from the points $A(5,1)$ and $B(1,5)$, prove that $x=y$.

Ans. $P A=P B$ (Given)
$\therefore P A^{2}=P B^{2}$
$\Rightarrow(5-x)^{2}+(1-y)^{2}=(1-x)^{2}+(5-y)^{2}$
$\Rightarrow 25+x^{2}-10 x+1+y^{2}-2 y=1+x^{2}-2 x+25+y^{2}-10 y$
$\Rightarrow-8 x=-10 y+2 y$
$\Rightarrow-8 x=-8 y$
$\Rightarrow x=y$
14. Find the point on the x-axis which is equidistant from $(2,-5)$ and $(-2,9)$.

Ans. Let the point be $(x, 0)$ on x-axis which is equidistant from $(2,-5)$ and $(-2,9)$.
Using Distance Formula and according to given conditions we have:

$$
\begin{aligned}
& \sqrt{[x-2]^{2}+[0-(-5)]^{2}}=\sqrt{[x-(-2)]^{2}+[(0-9)]^{2}} \\
& \Rightarrow \sqrt{x^{2}+4-4 x+25}=\sqrt{x^{2}+4+4 x+81}
\end{aligned}
$$

Squaring both sides, we get
$\Rightarrow x^{2}+4-4 x+25=x^{2}+4+4 x+81$
$\Rightarrow-4 \mathrm{x}+29=4 \mathrm{x}+85$
$\Rightarrow 8 \mathrm{x}=-56$
$\Rightarrow \mathrm{x}=-7$

Therefore, point on the x -axis which is equidistant from $(2,-5)$ and $(-2,9)$ is $(-7,0)$
15. Find the coordinates of the points of trisection of the line segment joining $(4,-1)$ and $(-2,-3)$.

Ans. We want to find coordinates of the points of trisection of the line segment joining $(4,-1)$ and $(-2,-3)$.

We are given $\mathrm{AC}=\mathrm{CD}=\mathrm{DB}$

We want to find coordinates of point C and D .

Let coordinates of point C be $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and let coordinates of point D be $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$.

Clearly, point C divides line segment AB in 1:2 and point D divides line segment AB in 2:1.
Using Section Formula to find coordinates of point C which divides join of $(4,-1)$ and $(-2,-3)$ in the ratio 1:2, we get
$x_{1}=\frac{1 \times(-2)+3 \times 4}{1+2}=\frac{-2+8}{3}=\frac{6}{3}=2$
$y_{1}=\frac{1 \times(-3)+2 \times(-1)}{1+2}=\frac{-3-2}{3}=\frac{-5}{3}$

Using Section Formula to find coordinates of point D which divides join of $(4,-1)$ and $(-2,-3)$ in the ratio $2: 1$, we get
$x_{2}=\frac{2 \times(-2)+1 \times 4}{1+2}=\frac{-4+4}{3}=\frac{0}{3}=0$
$y_{2}=\frac{2 \times(-3)+1 \times(-1)}{1+2}=\frac{-6-1}{3}=\frac{-7}{3}$
Therefore, coordinates of point C are $\left(2, \frac{-5}{3}\right)$ and coordinates of point D are $\left(0, \frac{-7}{3}\right)$.
16. To conduct sports day activities, in your rectangular shaped school ground ABCD, lines have been drawn with chalk powder at a distance of 1 m each. 100 flower pots have been placed at a distance of $1 \mathbf{m}$ from each other along AD. Niharika runs 14th of the distance AD on the 2nd line and posts a green flag. Preet runs 15th of the distance AD on the eighth line and posts a red flag. What is the distance between both the flags? If Rashmi has to post a blue flag exactly halfway between the line segment joining the two flags, where should she post her flag?

Ans. Niharika runs $14^{\text {th }}$ of the distance AD on the $2^{\text {nd }}$ line and posts a green flag.
There are 100 flower pots. It means, she stops at 25th flower pot.
Therefore, the coordinates of point where she stops are ($2 \mathrm{~m}, 25 \mathrm{~m}$).
Preet runs 15th of the distance AD on the eighth line and posts a red flag. There are 100
flower pots. It means, she stops at 20th flower pot.

Therefore, the coordinates of point where she stops are $(8,20)$.

Using Distance Formula to find distance between points ($2 \mathrm{~m}, 25 \mathrm{~m}$) and ($8 \mathrm{~m}, 20 \mathrm{~m}$), we get
$d=\sqrt{(2-8)^{2}+(25-20)^{2}}=\sqrt{(-6)^{2}+5^{2}}=\sqrt{36+25}=\sqrt{61} \mathrm{~m}$
Rashmi posts a blue flag exactly halfway the line segment joining the two flags.
Using section formula to find the coordinates of this point, we get
$x=\frac{2+8}{2}=\frac{10}{2}=5$
$y=\frac{25+20}{2}=\frac{45}{2}$
Therefore, coordinates of point, where Rashmi posts her flag are (5, $\frac{45}{2}$).
It means she posts her flag in 5th line after covering $\frac{45}{2}=22.5 \mathrm{~m}$ of distance.
17. If A and B are $(-2,-2)$ and $(2,-4)$ respectively, find the coordinates of P such that AP $=\frac{3}{7} \mathrm{AB}$ and P lies on the line segment $A B$.

Ans. $A=(-2,-2)$ and $B=(2,-4)$
It is given that $A P=\frac{3}{7} A B$
$\mathrm{PB}=\mathrm{AB}-\mathrm{AP}=\mathrm{AB}-\frac{3}{7} \mathrm{AB}=\frac{4}{7} \mathrm{AB}$

So, we have AP:PB = 3:4

Let coordinates of P be (x, y)

Using Section formula to find coordinates of P , we get
$x=\frac{(-2) \times 4+2 \times 3}{3+4}=\frac{6-8}{7}=\frac{-2}{7}$
$y=\frac{(-2) \times 4+(-4) \times 3}{3+4}=\frac{-8-12}{7}=\frac{-20}{7}$
Therefore, Coordinates of point P are $\left(\frac{-2}{7}, \frac{-20}{7}\right)$.
18. In each of the following find the value of ' k ', for which the points are collinear.
(i) $(7,-2),(5,1),(3, k)$
(ii) $(8,1),(k,-4),(2,-5)$

Ans. (i) (7, -2), (5, 1), (3, k)

Since, the given points are collinear, it means the area of triangle formed by them is equal to zero.

Area of Triangle $=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=0$
$\Rightarrow 1 / 2[7(1-k)+5\{k-(-2)\}+3(-2-1)]=1 / 2(7-7 k+5 k+10-9)=0$
$\Rightarrow 1 / 2(7-7 \mathrm{k}+5 \mathrm{k}+1)=0$
$\Rightarrow 1 / 2(8-2 k)=0$
$\Rightarrow 8-2 \mathrm{k}=0$ s
$\Rightarrow 2 \mathrm{k}=8$
$\Rightarrow \mathrm{k}=4$
(ii) $(8,1),(k,-4),(2,-5)$

Since, the given points are collinear, it means the area of triangle formed by them is equal to zero.

Area of Triangle $=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=0$
$\Rightarrow 1 / 2[8\{-4-(-5)\}+\mathrm{k}(-5-1)+2\{1-(-4)\}]=1 / 2(8-6 \mathrm{k}+10)=0$
$\Rightarrow 1 / 2(18-6 \mathrm{k})=0$
$\Rightarrow 18-6 \mathrm{k}=0$
$\Rightarrow 18=6 \mathrm{k}$
$\Rightarrow \mathrm{k}=3$
19. Find the area of the triangle formed by joining the mid-points of the sides of the triangle whose vertices are $(0,-1),(2,1)$ and $(0,3)$. Find the ratio of this area to the area of the given triangle

Ans. Let $\mathrm{A}=(0,-1)=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}=(2,1)=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and
$C=(0,3)=\left(x_{3}, y_{3}\right)$

Area of $\triangle \mathrm{ABC}=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
\Rightarrow Area of $\triangle \mathrm{ABC}$
$=1 / 2[0(1-3)+2\{3-(-1)\}+0(-1-1)]=1 / 2 \times 8$
$=4$ sq. units
P, Q and R are the mid-points of sides $A B, A C$ and $B C$ respectively.

Applying Section Formula to find the vertices of P, Q and R, we get
$P=\frac{0+2}{2}, \frac{1-1}{2}=(1,0)$
$Q=\frac{0+0}{2}, \frac{-1+3}{2}=(0,1)$
$R=\frac{2+0}{2}, \frac{1+3}{2}=(1,2)$
Applying same formula, Area of $\triangle \mathrm{PQR}=1 / 2[1(1-2)+0(2-0)+1(0-1)]=1 / 2|-2|$
$=1$ sq. units (numerically)
Now, $\frac{\text { Area of } \triangle P Q R}{\text { Area of } \triangle A B C}=\frac{1}{4}=1: 4$
20. Find the area of the quadrilateral whose vertices taken in order are $(-4,-2),(-3,-5)$, $(3,-2)$ and $(2,3)$.

Ans. Area of Quadrilateral ABCD
= Area of Triangle ABD + Area of Triangle BCD ...

Using formula to find area of triangle:

Area of $\triangle \mathrm{ABD}$
$=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$=1 / 2[-4(-5-3)-3\{3-(-2)\}+2\{-2-(-5)\}]$
$=1 / 2(32-15+6)=1 / 2(23)=11.5$ sq units
Again using formula to find area of triangle:
Area of $\triangle \mathrm{BCD}=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$=1 / 2[-3(-2-3)+3\{3-(-5)\}+2\{-5-(-2)\}]$
$=1 / 2(15+24-6)=1 / 2(33)=16.5$ sq units
Putting (2) and (3) in (1), we get
Area of Quadrilateral $\mathrm{ABCD}=11.5+16.5=28$ sq units.
21. We know that median of a triangle divides it into two triangles of equal areas. Verify this result for $\triangle A B C$ whose vertices are $A(4,-6), B(3,-2)$ and $C(5,2)$.

Ans. We have $\triangle \mathrm{ABC}$ whose vertices are given.

We need to show thatar $(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ACD})$.

Let coordinates of point D are (x, y)

Using section formula to find coordinates of D, we get
$x=\frac{3+5}{2}=\frac{8}{2}=4$
$y=\frac{-2+2}{2}=\frac{0}{2}=0$
Therefore, coordinates of point D are $(4,0)$
Using formula to find area of triangle:
Area of $\triangle \mathrm{ABD}=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$=1 / 2[4(-2-0)+3\{0-(-6)\}+4\{-6-(-2)\}]$
$=1 / 2(-8+18-16)=1 / 2(-6)=-3$ sq units
Area cannot be in negative.

Therefore, we just consider its numerical value.
Therefore, area of $\triangle A B D=3$ sq units
Again using formula to find area of triangle:
Area of $\triangle \mathrm{ACD}=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$=1 / 2[4(2-0)+5\{0-(-6)\}+4\{-6-2)\}]$
$=1 / 2(8+30-32)=1 / 2(6)=3$ sq units
From (1) and (2), we getar $(\triangle A B D)=\operatorname{ar}(\triangle A C D)$

Hence Proved.
22. Find the centre of a circle passing through the points $(6,-6),(3,-7)$ and $(3,3)$.

Ans. Let $\mathrm{P}(x, y)$, be the centre of the circle passing through the points $\mathrm{A}(6,-6), \mathrm{B}(3,-7)$ and $\mathrm{C}(3,3)$. Then $\mathrm{AP}=\mathrm{BP}=\mathrm{CP}$.

Taking AP $=\mathrm{BP}$
$\Rightarrow \mathrm{AP}^{2}=\mathrm{BP}^{2}$
$\Rightarrow(x-6)^{2}+(y+6)^{2}=(x-3)^{2}+(y+7)^{2}$
$\Rightarrow x^{2}-12 x+36+y^{2}+12 y+36=x^{2}-6 x+9+y^{2}+14 y+49$
$\Rightarrow-12 x+6 x+12 y-14 y+72-58=0$
$\Rightarrow-6 x-2 y+14=0$
$\Rightarrow 3 x+y-7=0$
Again, taking BP = CP
$\Rightarrow \mathrm{BP}^{2}=\mathrm{CP}^{2}$
$\Rightarrow(x-3)^{2}+(y+7)^{2}=(x-3)^{2}+(y-3)^{2}$
$\Rightarrow x^{2}-6 x+9+y^{2}+14 y+49=x^{2}-6 x+9+y^{2}-6 y+9$
$\Rightarrow-6 x+6 x+14 y+6 y+58-18=0$
$\Rightarrow 20 y+40=0$
$\Rightarrow y=-2$

Putting the value of y in eq. (i),
$3 x+y-7=0$
$\Rightarrow 3 x=9$
$\Rightarrow x=3$
Hence, the centre of the circle is $(3,-2)$.
23. The vertices of $a \Delta A B C$ are $A(4,6), B(1,5)$ and $C(7,2)$. A line is drawn to intersect sides $A B$ and $A C$ at D and E respectively such that $\frac{A D}{A B}=\frac{A E}{A C}=\frac{1}{4}$. Calculate the area of the $\triangle \mathrm{ADE}$ and compare it with the area of $\triangle \mathrm{ABC}$.

Ans. Since, $\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AE}}{\mathrm{AC}}=\frac{1}{4}$
$\therefore \mathrm{DE} \| \mathrm{BC}$ [By Thales theorem]
$\therefore \triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$
$\therefore \frac{\text { Area }(\triangle A D E)}{\text { Area }(\triangle A B C)}=\frac{A D^{2}}{A B^{2}}$
$=\left(\frac{\mathrm{AD}}{\mathrm{AB}}\right)^{2}=\left(\frac{1}{4}\right)^{2}=\frac{1}{16}$

Now, Area $(\Delta \mathrm{ABC})=\frac{1}{2}[4(5-2)+1(2-6)+7(6-5)]$
$=\frac{1}{2}[12-4+7]=\frac{15}{2}$ sq. units
From eq. (i) and (ii),
$\operatorname{Area}(\Delta \mathrm{ADE})=\frac{1}{16} \times \operatorname{Area}(\Delta \mathrm{ABC})=\frac{1}{16} \times \frac{15}{2}=\frac{15}{32}$ sq. units
\therefore Area $(\triangle \mathrm{ADE}): \operatorname{Area}(\triangle \mathrm{ABC})=1: 16$

CBSE Class 10 Mathematics

Important Questions
 Chapter 7
 Coordinate Geometry

4 Marks Questions

1. If the points (x, y) is equidistant from the points $(a+b, b-a)$ and $(a-b, a+b)$, prove that $b x=a y$.

Ans. Let $P(x, y), A(a+b, b-a)$ and $B(a-b, a+b)$
$P A=P B \quad$ (Given)
$\Rightarrow P A^{2}=P B^{2}$
$\Rightarrow(a+b-x)^{2}+(b-a-y)^{2}=(a-b-x)^{2}+(a+b-y)^{2}$
$\Rightarrow a^{2}+b^{2}+x^{2}+2 a b-2 a x-2 a x+b^{2}+a^{2}+y^{2}-2 a b+2 a y-2 b y$
$\Rightarrow a^{2}+b^{2}+x^{2}-2 a b+2 b x-2 a x+a^{2}+b^{2}+y^{2}+2 a b-2 b y-2 a y$
$\Rightarrow 4 a b-4 b x-4 a b=-2 a y-2 a y$
$\Rightarrow-4 b x=-4 a y$
$\Rightarrow b x=a y$
2. $(-2,2),(x, 8)$ and $(6, y)$ are three concyclic points whose centre is $(2,5)$. Find the possible value of x and y.

Ans. $O A=O B=O C=$ Radius of circle
$\Rightarrow O A^{2}=O B^{2}=O C^{2}$

$$
\begin{aligned}
& O B^{2}=O A^{2} \\
& \Rightarrow(x-2)^{2}+(8-5)^{2}=(2+2)^{2}+(5-2)^{2} \\
& \Rightarrow x^{2}+4-4 x+9=16+9 \\
& \Rightarrow x^{2}-4 x-12=0 \\
& \Rightarrow x^{2}-6 x+2 x-12=0 \\
& \Rightarrow x(x-6)+2(x-6)=0 \\
& \Rightarrow(x-6)(x+2)=0 \\
& \Rightarrow x=6 \text { or } x=-2 \\
& \\
& \text { A(-2,2) } \\
& \text { B } \\
& (x, 8) \\
& \text { OC } \\
& \Rightarrow(6,5) \\
& \Rightarrow(6-2)^{2}+(y-5)^{2}=(2+2)^{2}+(5-2)^{2} \\
& \Rightarrow(4)^{2}+y^{2}+25-10 y=16+9 \\
& \Rightarrow y^{2}-10 y+16=0 \\
& \Rightarrow y^{2}-8 y-2 y+16=0 \\
& \Rightarrow y(y-8)-2(y-8)=0 \\
& \Rightarrow(y-8) y-2=0 \\
& \Rightarrow y=8 \text { or } y=2
\end{aligned}
$$

3. Find the vertices of the triangle, the mid-points of whose sides are $(3,1),(5,6)$ and $(-3,2)$.

Ans. Let vertices of $\triangle A B C$ be $A\left(x_{1} y_{1}\right), B\left(x_{2} y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$
By mid-points formula

$$
\begin{align*}
& \frac{x_{2}+x_{3}}{2}=3 \Rightarrow x_{2}+x_{3}=6 \ldots \tag{i}\\
& \frac{y_{2}+y_{3}}{2}=1 \Rightarrow y_{2}+y_{3}=2 \ldots \tag{ii}\\
& \frac{x_{3}+x_{1}}{2}=5 \Rightarrow x_{3}+x_{1}=10 \ldots \tag{iii}
\end{align*}
$$

$\frac{y_{3}+y_{1}}{2}=6 \Rightarrow y_{1}+y_{3}=12$.
$\frac{x_{1}+x_{2}}{2}=-3 \Rightarrow x_{1}+x_{2}=-6 \ldots$
$\frac{y_{1}+y_{2}}{2}=2 \Rightarrow y_{1}+y_{2}=4$.
Adding (i), (iii) and (v)

$2\left(x_{1}+x_{2}+x_{3}\right)=10$
$\Rightarrow x_{1}+x_{2}+x_{3}=5$. \qquad

Adding (ii), (iv)and (vi)

$$
\begin{align*}
& 2\left(y_{1}+y_{2}+y_{3}\right)=18 \\
& y_{1}+y_{2}+y_{3}=9 \ldots \ldots . \tag{viii}
\end{align*}
$$

Subtracting (i), (iii) and (v) from (vii)
We get, $x_{1}=-1, x_{2}=-5, x_{3}=11$
Subtracting (ii), (iv) and (vi) from eq. (viii)
We get, $y_{1}=7, y_{2}=-3, y_{3}=5$
4. The two opposite vertices of a square are $(1,-6)$ and $(5,4)$. Find the coordinates of the other two vertices.

Ans. $A B=B C$
$\Rightarrow A B^{2}=B C^{2}$
$\Rightarrow(x-1)^{2}+(y+6)^{2}=(x-5)^{2}+(y-4)^{2}$
$\Rightarrow x^{2}+1-2 x+y^{2}+36+12 y=x^{2}+25-10 x+y^{2}+16-8 y$
$\Rightarrow 8 x+20 y-4=0$
$\Rightarrow 2 x+5 y=1$
$\Rightarrow y=\frac{1-2 x}{5}$
In right $\triangle A B C$,
$A C^{2}=(A B)^{2}+(B C)^{2}$
$\Rightarrow(x-1)^{2}+(y+6)^{2}+(x-5)^{2}+(y-4)^{2}=(5-1)^{2}+(4+6)^{2}$
$\Rightarrow 2\left(x^{2}+y^{2}-6 x+2 y\right)=38$
$\Rightarrow x^{2}+y^{2}-6 x+2 y=19$.
Put the value of y in eq. (i)
$x^{2}+\left(\frac{1-2 x}{5}\right)^{2}-6 x+2\left(\frac{1-2 x}{5}\right)=19$
$\Rightarrow 29 x^{2}-174 x-464=0$
$\Rightarrow x^{2}-6 x-16=0$
$\Rightarrow x^{2}-8 x+2 x-16=0$
$\Rightarrow x(x-8)+2(x-8)=0$
$\Rightarrow(x-8)(x+2)=0$
$\Rightarrow x=8$ or $x=-2$
Now $x=-2, \Rightarrow y=1$
And $x=8 \Rightarrow y=-3$
5. Find the coordinates of the circumcentre of a triangle whose vertices are $\mathrm{A}(4,6)$, $B(0,4)$ and $C(6,2)$. Also find its circum-radius.

Ans. Let P be the circum-centre of $\triangle A B C$, then $\mathrm{PA}=\mathrm{PB}=\mathrm{PC}$
$\Rightarrow P A^{2}=P B^{2}=P C^{2}$
$P A^{2}=P B^{2}$
$\Rightarrow(x-4)^{2}+(y-6)^{2}=(x-0)^{2}+(y-4)^{2}$
$\Rightarrow 8 x+4 y=36$
$\Rightarrow 2 x+y=9$
$P B^{2}=P C^{2}$
$\Rightarrow(x-0)^{2}+(y-4)^{2}=(x-6)^{2}+(y-2)^{2}$
$\Rightarrow 12 x-4 y=24$
$\Rightarrow 3 x-y=6$

On solving equations (i) and (ii), $x=3, y=3$
Circum-radius (PA) $=\sqrt{(4-3)^{2}+(6-3)^{2}}=\sqrt{10}$
6. If two vertices of an equilateral triangle are $(0,0)(3, \sqrt{3})$, Find the third vertex.

Ans. $O A=O B=A B$
$\Rightarrow O A^{2}=O B^{2}=A B^{2}$
$O A^{2}=O B^{2}$
$\Rightarrow x^{2}+y^{2}=12$.
$O B^{2}=A B^{2}$
$\Rightarrow 3 x+\sqrt{3} y=6$
$\Rightarrow y=\frac{6-3 x}{\sqrt{3}}$
Put the value of y in eq. (i),
$x^{2}+\left(\frac{6-3 x}{\sqrt{3}}\right)^{2}=12$
$\Rightarrow x=0$ or $x=3$
When $x=0, y=2 \sqrt{3}$
$(0,2 \sqrt{3})$
When $x=3, y=-\sqrt{3}$
$(3,-\sqrt{3})$
7. If P and Q are two points whose coordinates are $\left(a t^{2}, 2 a t\right)$ and $\left(\frac{a}{t^{2}}, \frac{2 a}{t}\right)$ respectively and S is the point $(a, 0)$, show that $\frac{1}{S P}+\frac{1}{S Q}$ is independent of t.

Ans. $S P=\sqrt{\left(a t^{2}-a\right)^{2}+(2 a t-0)^{2}}$
$=a \sqrt{\left(t^{2}-1\right)^{2}+4 t^{2}}$
$=a \sqrt{t^{4}+1-2 t^{2}+4 t^{2}}$
$=a \sqrt{\left(t^{2}+1\right)^{2}}$
$=a\left(t^{2}+1\right)$
$S Q=\sqrt{\left(\frac{a}{t^{2}}-a\right)^{2}+\left(\frac{2 a t}{t}-0\right)^{2}}$
$=\frac{a}{t^{2}} \sqrt{\left(1+t^{2}\right)^{2}}$
$=\frac{a}{t^{2}}\left(1+t^{2}\right)$
$\frac{1}{S P}+\frac{1}{S Q}=\frac{1}{a\left(t^{2}+1\right)}+\frac{t^{2}}{a\left(1+t^{2}\right)}$
$=\frac{\left(1+t^{2}\right)}{a\left(t^{2}+1\right)}$
$=\frac{1}{a}$
Hence proved.
8. Find the area of the quadrilateral whose vertices taken in order are (-4,-2), (-3,5), (3,-2) and (2,3).

Ans. $\operatorname{ar}(\triangle A B C)=\frac{1}{2}[(20+6-6)-(6-15+8)]$
$=10.5$ sq. units
$\left[\operatorname{ar}\right.$ of $\Delta=\frac{1}{2}\left[x_{,}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$\operatorname{ar}(\triangle A C D)=\frac{1}{2}[(8+9-4)-(-6-4-12)]$

$$
=\frac{1}{2}[13+22]=17.5 \text { sq.units }
$$

area of quadrilateral $=10.5+17.5=28$ sq. units.
9. The vertices of $\triangle A B C$ are $A(4,6), B(1,5)$ and $C(7,2)$. A line is drawn to intersect sides $A B$ and $A C$ at D and E respectively such that $\frac{A D}{A B}=\frac{A E}{A C}=\frac{1}{4}$. Calculate the area of the $\triangle A D E$ and compare it with the area of $\triangle A B C$.

Ans. $\frac{A D}{A B}=\frac{A E}{A C}=\frac{1}{4}$
$\Rightarrow \frac{A B}{A D}=\frac{A C}{A E}=\frac{4}{1}$
$\frac{A D+D B}{A D}=\frac{A E+E C}{A E}=4$
$1+\frac{D B}{A D}=1+\frac{E C}{A E}=4$
$\frac{D B}{A D}=\frac{E C}{A E}=3$
$\frac{A D}{D B}=\frac{A E}{E C}=\frac{1}{3}$
$A D: D B=A E: E C=1: 3$
Now coordinate of D and E are
$\left(\frac{13}{4}, \frac{23}{4}\right)$ and $\left(\frac{19}{4} ; 5\right)$
$\operatorname{ar}(\triangle A D E)=\frac{15}{32}$
$\operatorname{ar}(\triangle A B C)=\frac{15}{2}$
$\frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle A B C)}=\frac{1}{16}$
$=1: 16$
10. Prove that the points $(a, a),(-a,-a)$ and $(-\sqrt{3} a, \sqrt{3} a)$ are the vertices of an equilateraltriangle. Calculate the area of this triangle.

Ans. Let $A(a, a), B(-a,-a) C(-\sqrt{3} a, \sqrt{3} a)$

$$
\begin{aligned}
& A B=\sqrt{(-a-a)^{2}+(-a-a)^{2}}=\sqrt{8 a^{2}}=2 \sqrt{2} a \\
& A B=\sqrt{(-\sqrt{3 a}+a)^{2}+(\sqrt{3} a+a)^{2}}=2 \sqrt{2} a \\
& A C=\sqrt{(-\sqrt{3} a-a)^{2}+(\sqrt{3} a-a)^{2}}=2 \sqrt{2} a \\
& \therefore A B=B C=A C=2 \sqrt{2} a \\
& \text { ar } \triangle A B C=\frac{\sqrt{3}}{4} \times(\text { side })^{2} \\
& =\frac{\sqrt{3}}{4} \times(2 \sqrt{2} a) \\
& =2 \sqrt{3} a^{2}
\end{aligned}
$$

11. $A(4,-8), B(3,6)$ and $C(5,-4)$ are the vertices of a $\triangle A B C, D$ is the mid-point of $B C$ and P is a point on $A D$ joined such that $\frac{A D}{P D}=2$, find the coordinates of P.

Ans. Let $A(4,-8), B(3,6)$ and $C(5,-4)$ are the vertices of $\triangle A B C, D$ is the mid- point of BC
$\frac{A P}{P D}=\frac{2}{1}$
$\Rightarrow A P: P D=2: 1$

Coordinate of $\mathrm{D}\left(\frac{3+5}{2}, \frac{6-4}{2}\right)$
i.e., $(4,1)$

Coordinate of P are $\left(\frac{2 \times 4+1 \times 4}{2+1}, \frac{2 \times 1+1 \times(-8)}{2+1}\right)$
i.e., $\left(\frac{8+4}{3}, \frac{2-8}{3}\right)$
i.e., $(4,-2)$
12. The coordinates of the vertices of $\triangle A B C$ are $A(4,1), B(-3,2)$ and $C(O, K)$.

Given that the area of $\triangle A B C$ is 12 , find the value of K.
Ans. $A(4,1), B(-3,2)$ and $C(0, k)$
$\operatorname{ar} \Delta A B C=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$=\frac{1}{2}[4(2-k)+(-3)(k-1)+0(1-2)]$
$=\frac{1}{2}[8-4 k-3 k+3]=\frac{1}{2}[11-7 k]$
But area of $\Delta=12$
$\Rightarrow \frac{1}{2}|11-7 k|=12$
$\Rightarrow \frac{1}{2}(11-7 k)= \pm 12$
$\Rightarrow 11-7 k=24$
$\Rightarrow k=\frac{-13}{7}$
If $11-7 k=-24$
$\Rightarrow k=5$
Value of $k\left(\frac{-13}{7}, 5\right)$
13. Find the lengths of the medians of the triangle whose vertices are $(1,-1),(0,4)$ and $(-5,3)$.

Ans. Coordinates of points D, E and F are
$\left(\frac{0-5}{2}, \frac{4+3}{2}\right),\left(\frac{-5+1}{2}, \frac{3-1}{2}\right)$ and $\left(\frac{1+0}{2}, \frac{-1+4}{2}\right)$
i.e $\left(\frac{-5}{2}, \frac{7}{2}\right),(-2,1)$ and $\left(\frac{1}{2}, \frac{3}{2}\right)$

Length of the median AD
$=\sqrt{\left(\frac{-5}{2}-1\right)^{2}+\left(\frac{7}{2}+1\right)^{2}}=\frac{\sqrt{130}}{2}$
Length of the median BE
$=\sqrt{(-2-0)^{2}+(1-4)^{2}}=\sqrt{4+9}=\sqrt{13}$

And length of the median CF
$C F=\sqrt{\left(\frac{1}{2}+5\right)^{2}+\left(\frac{3}{2}-3\right)^{2}}=\frac{\sqrt{130}}{2}$
14. The area of a triangle is 5 . Two of its vertices are $(2,1)$ and $(3,-2)$. The third vertex lies on $y=x+3$. Find the third vertex.

Ans. Let the third vertex be $A(x, y)$. Other two vertices of the Δ are $B(2,1)$ and $C(3,-2)$
ar of $\triangle A B C=5$
$\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]= \pm 5$
$\Rightarrow \frac{1}{2}[x(1+2)+2(-2-y)+3(y-1)]= \pm 5$
$\Rightarrow 3 x+y-7= \pm 10$
$\Rightarrow 3 x+y=17$ or $3 x+y=-3$
(x, y) lies on eq. $y=x+3$
On solving eq. $3 x+y=17$ and $y=x+3$
We get $x=\frac{7}{2}, y=\frac{13}{2}$
Similarly, on solving eq. $3 x+y=-3$ and $y=x+3$
We get $\left(\frac{-3}{2}, \frac{3}{2}\right)$
15. Prove that the point $(a, 0),(a, b)$ and $(1,1)$ are collinear, if $\frac{1}{a}+\frac{1}{b}=1$

Ans. Since $(a, 0),(0, b)$ and $(1,1)$ are collinear

Area $=0$
$\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=0$
$\Rightarrow \frac{1}{2}[a(b-1)+0(1-0)+1(0-b)]=0$
$\Rightarrow a b-a-b=0$
$\Rightarrow a b=a+b$
Dividing by $a b$,
$\frac{a b}{a b}=\frac{a}{a b}+\frac{b}{a b}$
$\frac{1}{a}+\frac{1}{b}=1$
16. If, $Q(0,1)$ is equidistant from $P(5,-3)$ and $R(x, 6)$, find the values of x. Also, find the distances QR and PR.

Ans. It is given that Q is equidistant from P and R . UsingDistance Formula, we get
$P Q=R Q$
$\Rightarrow \mathrm{PQ}^{2}=\mathrm{RQ}^{2}$
$\Rightarrow \sqrt{(0-5)^{2}+\left[1-(-3)^{2}\right]}=\sqrt{(0-x)^{2}+(1-6)^{2}}$
$\Rightarrow \sqrt{(-5)^{2}+\left[4^{2}\right]}=\sqrt{(x)^{2}+(-5)^{2}}$
$\Rightarrow \sqrt{25+16}=\sqrt{x^{2}+25}$
Squaring both sides, we get
$\Rightarrow 25+16=x^{2}+25$
$\Rightarrow x^{2}=16$
$\Rightarrow x=4,-4$

Thus, Q is $(4,6)$ or $(-4,6)$.
Using Distance Formula to find QR, we get
Using value of $x=4$
$\mathrm{QR}=\sqrt{(4-0)^{2}+\left[6-1^{2}\right]}$
$=\sqrt{16+25}=\sqrt{41}$
Using value of $x=-4$
$\mathrm{QR}=\sqrt{(-4-0)^{2}+\left[6-1^{2}\right]}$
$=\sqrt{16+25}=\sqrt{41}$
Therefore, $\mathrm{QR}=\sqrt{41}$
Using Distance Formula to find PR, we get

Using value of $x=4$
$P R=\sqrt{(4-5)^{2}+\left[6-(-3)^{2}\right]}$
$=\sqrt{1+81}=\sqrt{82}$
Using value of $x=-4$
$P R=\sqrt{(-4-5)^{2}+\left[6-(-3)^{2}\right]}$
$=\sqrt{81+81}=\sqrt{162}=9 \sqrt{2}$

Therefore, $\mathrm{x}=4,-4$
$\mathrm{QR}=\sqrt{41}, \mathrm{PR}=\sqrt{82}, 9 \sqrt{2}$
17. Find the coordinates of the points which divides the line segment joining $A(-2,2)$ and $B(2,8)$ into four equal parts.

Ans. $\mathrm{A}=(-2,2)$ and $\mathrm{B}=(2,8)$

Let P, Q and R are the points which divide line segment AB into 4 equal parts.

Let coordinates of point $\mathrm{P}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{Q}=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\mathrm{R}=\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$

We know $\mathrm{AP}=\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}$.
It means, point P divides line segment $A B$ in 1:3.
Using Section formula to find coordinates of point P, we get
$x_{1}=\frac{(-2) \times 3+2 \times 1}{1+3}=\frac{-6+2}{4}=\frac{-4}{4}=-1$
$y_{1}=\frac{2 \times 3+8 \times 1}{1+3}=\frac{6+8}{4}=\frac{14}{4}=\frac{7}{2}$
Since, $\mathrm{AP}=\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}$.

It means, point Q is the mid-point of AB .

Using Section formula to find coordinates of point Q, we get
$x_{2}=\frac{(-2) \times 1+2 \times 1}{1+1}=\frac{-2+2}{2}=\frac{0}{2}=0$
$y_{2}=\frac{2 \times 1+8 \times 1}{1+1}=\frac{2+8}{2}=\frac{10}{2}=5$
Because, $\mathrm{AP}=\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}$.
It means, point R divides line segment $A B$ in 3:1
Using Section formula to find coordinates of point P, we get
$x_{3}=\frac{(-2) \times 1+2 \times 3}{1+3}=\frac{-2+6}{4}=\frac{4}{4}=1$
$y_{3}=\frac{2 \times 1+8 \times 3}{1+3}=\frac{2+24}{4}=\frac{26}{4}=\frac{13}{2}$
Therefore, $\mathrm{P}=\left(-1, \frac{7}{2}\right), \mathrm{Q}=(0,5)$ and $\mathrm{R}=\left(1, \frac{13}{2}\right)$
18. The two opposite vertices of a square are ($-1,2$) and (3,2). Find the coordinates of the other two vertices.

Ans. Let ABCD be a square and $\mathrm{B}(x, y)$ be the unknown vertex.
$A B=B C$
$\Rightarrow \mathrm{AB}^{2}=\mathrm{BC}^{2}$
$\Rightarrow(x+1)^{2}+(y-2)^{2}=(x-3)^{2}+(y-2)^{2}$
$\Rightarrow 2 x+1=-6 x+9$
$\Rightarrow 8 x=8$
$\Rightarrow x=1$
In $\triangle \mathrm{ABC}, \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$
$\Rightarrow(x+1)^{2}+(y-2)^{2}+(x-3)^{2}+(y-2)^{2}=(3+1)^{2}+(2-2)^{2}$
$\Rightarrow 2 x^{2}+2 y^{2}+2 x-4 y-6 x-4 y+1+4+9+4=16$
$\Rightarrow 2 x^{2}+2 y^{2}-4 x-8 y+2=0$
$\Rightarrow x^{2}+y^{2}-2 x-4 y+1=0$
Putting the value of x in eq. (ii),
$1+y^{2}-2-4 y+1=0$
$\Rightarrow y^{2}-4 y=0$
$\Rightarrow y(y-4)=0$
$\Rightarrow y=0$ or 4
19. The class X students of a secondary school in Krishinagar have been allotted a rectangular plot of land for their gardening activity. Saplings of Gulmoharare planted on the boundary at a distance of 1 m from each other. There is a triangular grassy lawn in the plot as shown in the figure. The students are to sow seeds of flowering plants on the remaining area of the plot.
(i) Taking A as origin, find the coordinates of the vertices of the triangle.
(ii) What will be the coordinates of the vertices of $\triangle P Q R$ if C is the origin? Also calculate the area of the triangle in these cases. What do you observe?

Ans. (i) Taking A as the origin, AD and AB as the coordinate axes. Clearly, the points P, Q and R are $(4,6),(3,2)$ and $(6,5)$ respectively.
(ii) Taking C as the origin, CB and CD as the coordinate axes. Clearly, the points P, Q and R are given by $(12,2),(13,6)$ and $(10,3)$ respectively.

We know that the area of the triangle $=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
\therefore Area of $\triangle \mathrm{PQR}($ First case $)=\frac{1}{2}[4(2-5)+3(5-6)+6(6-2)]$
$=\frac{1}{2}[4(-3)+3(-1)+6(4)]$
$=\frac{1}{2}[-12-3+24]=\frac{9}{2}$ sq. units
And Area of $\triangle \mathrm{PQR}($ Second case $)=\frac{1}{2}[12(6-3)+13(3-2)+10(2-6)]$
$=\frac{1}{2}[12(3)+13(1)+10(-4)]$
$=\frac{1}{2}[36+13-40]=\frac{9}{2}$ sq. units
Hence, the areas are same in both the cases.
20. $\mathbf{A B C D}$ is a rectangle formed by joining points $\mathbf{A}(-1,-1), \mathbf{B}(-1,4), \mathbf{C}(5,4)$ and \mathbf{D} $(5,-1) . P, Q, R$ and S are the mid-points of $A B, B C, C D$ and $D A$ respectively. Is the quadrilateral PQRS a square? Or a rhombus? Justify your answer.

Ans. Using distance formula, $\mathrm{PQ}=\sqrt{(2+1)^{2}+\left(4-\frac{3}{2}\right)^{2}}$

$$
=\sqrt{9+\frac{25}{4}}=\sqrt{\frac{61}{4}}
$$

$\mathrm{QR}=\sqrt{(5-2)^{2}+\left(\frac{3}{2}-4\right)^{2}}$
$=\sqrt{9+\frac{25}{4}}=\sqrt{\frac{61}{4}}$
$\mathrm{RS}=\sqrt{(2-5)^{2}+\left(-1-\frac{3}{2}\right)^{2}}$
$=\sqrt{9+\frac{25}{4}}=\sqrt{\frac{61}{4}}$
$\mathrm{SP}=\sqrt{(-1-2)^{2}+\left(\frac{3}{2}+1\right)^{2}}$
$=\sqrt{9+\frac{25}{4}}=\sqrt{\frac{61}{4}}$
$\Rightarrow \mathrm{PQ}=\mathrm{QR}=\mathrm{RS}=\mathrm{SP}$
Now, $\mathrm{PR}=\sqrt{(5+1)^{2}+\left(\frac{3}{2}-\frac{3}{2}\right)^{2}}=\sqrt{36}=6$
And $S Q=\sqrt{(2-2)^{2}+(4+1)^{2}}=\sqrt{25}=5$
$\Rightarrow \mathrm{PR} \neq \mathrm{SQ}$
Since all the sides are equal but the diagonals are not equal.
$\therefore \mathrm{PQRS}$ is a rhombus.
21. In a classroom, 4 friends are seated at the points $A(3,4), B(6,7), C(9,4)$ and $D(6,1)$. Champa and Chameli walk into the class and after observing for a few minutes Champa asks Chameli. "Don't you think ABCD is a square?"Chameli disagrees. Using distance
formula, find which of them is correct.

Ans. We have $\mathrm{A}=(3,4), \mathrm{B}=(6,7), \mathrm{C}=(9,4)$ and $\mathrm{D}=(6,1)$

Using Distance Formula to find distances $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA , we get
$A B=\sqrt{[6-3]^{2}+[7-4]^{2}}$
$=\sqrt{(3)^{2}+(3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}$
$B C=\sqrt{[9-6]^{2}+[4-7]^{2}}$
$=\sqrt{(3)^{2}+(-3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}$
$C D=\sqrt{[6-9]^{2}+[1-4]^{2}}$
$=\sqrt{(-3)^{2}+(-3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}$
$D A=\sqrt{[6-3]^{2}+[1-4]^{2}}$
$=\sqrt{(3)^{2}+(-3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}$
Therefore, All the sides of ABCD are equal here. ... (1)

Now, we will check the length of its diagonals.
$\mathrm{AC}=\sqrt{[9-3]^{2}+[4-4]^{2}}$
$=\sqrt{(6)^{2}+(0)^{2}}=\sqrt{36+0}=6$
$B D=\sqrt{[6-6]^{2}+[1-7]^{2}}$
$=\sqrt{(0)^{2}+(-6)^{2}}=\sqrt{0+36}=\sqrt{36}=6$

So, Diagonals of ABCD are also equal. ... (2)
From (1) and (2), we can definitely say that $A B C D$ is a square.
Therefore, Champa is correct.
22. Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer.
(i) $(-1,-2),(1,0),(-1,2),(-3,0)$
(ii) $(-3,5),(3,1),(0,3),(-1,-4)$
(iii) $(4,5),(7,6),(4,3),(1,2)$

Ans. (i) Let $\mathrm{A}=(-1,-2), \mathrm{B}=(1,0), \mathrm{C}=(-1,2)$ and $\mathrm{D}=(-3,0)$

Using Distance Formula to find distances AB, BC, CD and DA, we get
$A B=\sqrt{[1-(-1)]^{2}+[0-(-2)]^{2}}$
$=\sqrt{(2)^{2}+(2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$\mathrm{BC}=\sqrt{[-1-1]^{2}+[2-0]^{2}}$
$=\sqrt{(-2)^{2}+(2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$C D=\sqrt{[-3-(-1)]^{2}+[0-2]^{2}}$
$=\sqrt{(-2)^{2}+(-2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$D A=\sqrt{[-3-(-1)]^{2}+[0-(-2)]^{2}}$
$=\sqrt{(-2)^{2}+(2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
Therefore, all four sides of quadrilateral are equal. ... (1)

Now, we will check the length of diagonals.
$A C=\sqrt{[-1-(-1)]^{2}+[2-(-2)]^{2}}$
$=\sqrt{(0)^{2}+(4)^{2}}=\sqrt{0+16}=\sqrt{16}=4$
$\mathrm{BD}=\sqrt{[-3-1]^{2}+[0-0]^{2}}$
$=\sqrt{(-4)^{2}+(0)^{2}}=\sqrt{16+0}=\sqrt{16}=4$
Therefore, diagonals of quadrilateral ABCD are also equal. ... (2)

From (1) and (2), we can say that ABCD is a square.
(ii) Let $\mathrm{A}=(-3,5), \mathrm{B}=(3,1), \mathrm{C}=(0,3)$ and $\mathrm{D}=(-1,-4)$

Using Distance Formula to find distances $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA, we get
$A B=\sqrt{[3-(-3)]^{2}+[1-5]^{2}}=\sqrt{(6)^{2}+(-4)^{2}}=\sqrt{36+16}=\sqrt{52}=2 \sqrt{13}$
$B C=\sqrt{[0-3]^{2}+[3-1]^{2}}=\sqrt{(-3)^{2}+(2)^{2}}=\sqrt{9+4}=\sqrt{13}$
$C D=\sqrt{[-1-0]^{2}+[-4-3]^{2}}=\sqrt{(-1)^{2}+(-7)^{2}}=\sqrt{1+49}=\sqrt{50}=5 \sqrt{2}$
$D A=\sqrt{[-1-(-3)]^{2}+[-4-5]^{2}}=\sqrt{(2)^{2}+(-9)^{2}}=\sqrt{4+81}=\sqrt{85}$
We cannot find any relation between the lengths of different sides.

Therefore, we cannot give any name to the quadrilateral ABCD .
(iii) Let $\mathrm{A}=(4,5), \mathrm{B}=(7,6), \mathrm{C}=(4,3)$ and $\mathrm{D}=(1,2)$

Using Distance Formula to find distances AB, BC, CD and DA, we get
$A B=\sqrt{[7-4]^{2}+[6-5]^{2}}=\sqrt{(3)^{2}+(1)^{2}}=\sqrt{9+1}=\sqrt{10}$
$B C=\sqrt{[4-7]^{2}+[3-6]^{2}}=\sqrt{(-3)^{2}+(-3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}$
$C D=\sqrt{[1-4]^{2}+[2-3]^{2}}=\sqrt{(-3)^{2}+(-1)^{2}}=\sqrt{9+1}=\sqrt{10}$
$D A=\sqrt{[1-4]^{2}+[2-5]^{2}}=\sqrt{(-3)^{2}+(-3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}$
Here opposite sides of quadrilateral ABCD are equal. ... (1)
We can now find out the lengths of diagonals.
$\mathrm{AC}=\sqrt{[4-4]^{2}+[3-5]^{2}}=\sqrt{(0)^{2}+(-2)^{2}}=\sqrt{0+4}=\sqrt{4}=2$
$\mathrm{BD}=\sqrt{[1-7]^{2}+[2-6]^{2}}=\sqrt{(-6)^{2}+(-4)^{2}}=\sqrt{36+16}=\sqrt{52}=2 \sqrt{13}$
Here diagonals of ABCD are not equal. ... (2)
From (1) and (2), we can say that ABCD is not a rectangle therefore it is a parallelogram.
23. Let $A(4,2), B(6,5)$ and $C(1,4)$ be the vertices of $\triangle A B C$.
(i) The median from A meets BC at D. Find the coordinates of the point D.
(ii) Find the coordinates of the point P on $A D$ such that $A P: P D=2: 1$.
(iii) Find the coordinates of points Q and R on medians $B E$ and CF respectively such that BQ: QE = 2 : 1 and $C R: R F=2: 1$.
(iv) What do you observe?
(Note: The point which is common to all the three medians is called centroid and this point divides each median in the ratio $2: 1$)
(v) If $\mathbf{A}\left(x_{1}, y_{1}\right), \mathbf{B}\left(x_{2}, y_{2}\right)$ and $\mathbf{C}\left(x_{3}, y_{3}\right)$ are the vertices of $\Delta \mathbf{A B C}$, find the coordinates of the centroid of the triangle.

Ans. Let $A(4,2), B(6,5)$ and $C(1,4)$ be the vertices of $\triangle \mathrm{ABC}$.
(i) Since $A D$ is the median of $\triangle \mathrm{ABC}$.
$\therefore \mathrm{D}$ is the mid-point of BC .
\therefore Its coordinates are $\left(\frac{6+1}{2}, \frac{5+4}{2}\right)=\left(\frac{7}{2}, \frac{9}{2}\right)$
(ii) Since P divides $A D$ in the ratio $2: 1$
\therefore Its coordinates are $\left(\frac{2 \times \frac{7}{2}+1 \times 4}{2+1}, \frac{2 \times \frac{9}{2}+1 \times 2}{2+1}\right)=\left(\frac{11}{3}, \frac{11}{3}\right)$
(iii) Since BE is the median of $\triangle \mathrm{ABC}$.
$\therefore \mathrm{E}$ is the mid-point of AD .
\therefore Its coordinates are $\left(\frac{4+1}{2}, \frac{2+4}{2}\right)=\left(\frac{5}{2}, 3\right)$
Since Q divides BE in the ratio $2: 1$.
\therefore Its coordinates are $\left(\frac{2 \times \frac{5}{2}+1 \times 6}{2+1}, \frac{2 \times 3+1 \times 5}{2+1}\right)=\left(\frac{11}{3}, \frac{11}{3}\right)$

Since CF is the median of $\triangle \mathrm{ABC}$.
$\therefore F$ is the mid-point of $A B$.
\therefore Its coordinates are $\left(\frac{4+6}{2}, \frac{2+5}{2}\right)=\left(5, \frac{7}{2}\right)$
Since R divides CF in the ratio $2: 1$.
\therefore Its coordinates are $\left(\frac{2 \times 5+1 \times 1}{2+1}, \frac{2 \times \frac{7}{2}+1 \times 4}{2+1}\right)=\left(\frac{11}{3}, \frac{11}{3}\right)$
(iv) We observe that the points P, Q and R coincide, i.e., the medians AD, BE and CF are concurrent at the point $\left(\frac{11}{3}, \frac{11}{3}\right)$. This point is known as the centroid of the triangle.
(v) According to the question, D, E, and F are the mid-points of BC, CA and AB respectively.
\therefore Coordinates of D are $\left(\frac{x_{2}+x_{3}}{2}, \frac{y_{2}+y_{3}}{2}\right)$
Coordinates of a point dividing AD in the ratio $2: 1$ are

$$
\begin{aligned}
& \left(\frac{1 x_{1}+2\left(\frac{x_{2}+x_{2}}{2}\right)}{1+2}, \frac{1 \cdot y_{1}+2\left(\frac{y_{2}+y_{3}}{2}\right)}{1+2}\right) \\
& =\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)
\end{aligned}
$$

The coordinates of E are $\left(\frac{x_{1}+x_{3}}{2}, \frac{y_{1}+y_{3}}{2}\right)$.
\therefore The coordinates of a point dividing BE in the ratio $2: 1$ are

$$
\begin{aligned}
& \left(\frac{1 \cdot x_{2}+2\left(\frac{x_{1}+x_{3}}{2}\right)}{1+2}, \frac{1 \cdot y_{2}+2\left(\frac{y_{1}+y_{3}}{2}\right)}{1+2}\right. \\
& =\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)
\end{aligned}
$$

Similarly the coordinates of a point dividing CF in the ratio $2: 1$ are

$$
\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)
$$

Thus, the point $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$ is common to AD, BE and CF and divides them in the ratio $2: 1$.
\therefore The median of a triangle are concurrent and the coordinates of the centroid are $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$.

Thank You for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES

FREE Webinars by Expert Teachers

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

