Study Material
 Downloaded from Vedantu

FREE LIVE ONLINE

About Vedantu

Vedantu is India's largest LIVE online teaching platform with best teachers from across the country.

Vedantu offers Live Interactive Classes for JEE, NEET, KVPY, NTSE, Olympiads, CBSE, ICSE, IGCSE, IB \& State Boards for Students Studying in 6-12th Grades and Droppers.

Awesome Master Teachers

Anand Prakash
B.Tech, IIT Roorkee Co-Founder, Vedantu

Pulkit Jain
B.Tech, IIT Roorkee Co-Founder, Vedantu

Vamsi Krishna
B.Tech, IIT Bombay

Co-Founder, Vedantu

My mentor is approachable and guides me in my future aspirations as well.
Student - Ayushi

My son loves the sessions and I can already see the change.

Parent - Sreelatha

Hours of LIVE Learning

9,49,900+
Happy Students

95\% Students of Regular Tuitions on Vedantu scored above $\mathbf{9 0 \%}$ in exams!

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

Vedanta

Download Vedantu's App \& Get

(3)
All Study Material with Solution

LIVE
Doubt Solving
自
FREE Tests and Reports

CBSE Class 10 Mathematics

Important Questions

 Chapter 6 Triangles
1 Marks Questions

1. In the figure $\triangle A B C \sim \triangle E D C$, if we have $A B=4 \mathrm{~cm}, E D=3 \mathrm{~cm}, \mathrm{CE}=4.2 \mathrm{~cm}$ and $\mathrm{CD}=$ 4.8 cm , then the values of $C A$ and $C B$ are

(a) $6 \mathrm{~cm}, 6.4 \mathrm{~cm}$
(b) $4.8 \mathrm{~cm}, 6.4 \mathrm{~cm}$
(c) $5.4 \mathrm{~cm}, 6.4 \mathrm{~cm}$
(d) $5.6 \mathrm{~cm}, 6.4 \mathrm{~cm}$

Ans. (d) $5.6 \mathrm{~cm}, 6.4 \mathrm{~cm}$
2. The areas of two similar triangles are respectively $9 \mathrm{~cm}^{2}$ and $16 \mathrm{~cm}^{2}$. Then ratio of the corresponding sides are
(a) $3: 4$
(b) $4: 3$
(c) $2: 3$
(d) $4: 5$

Ans. d) 4:5

Vedantu

 Study Materials

 Study Materials}

NCERT Solutions for Class 6 to 12 (Math \& Science)
Revision Notes for Class 6 to 12 (Math \& Science)
RD Sharma Solutions for Class 6 to 12 Mathematics
RS Aggarwal Solutions for Class 6, 7 \& 10 Mathematics
Important Questions for Class 6 to 12 (Math \& Science)
CBSE Sample Papers for Class 9, 10 \& 12 (Math \&
Science)
Important Formula for Class 6 to 12 Math
CBSE Syllabus for Class 6 to 12
Lakhmir Singh Solutions for Class 9 \& 10
Previous Year Question Paper
CBSE Class 12 Previous Year Question Paper
CBSE Class 10 Previous Year Question Paper
JEE Main \& Advanced Question Paper
NEET Previous Year Question Paper
3. Two isosceles triangles have equal angles and their areas are in the ratio $\mathbf{1 6 : 2 5}$, then the ratio of their corresponding heights is
(a) $\frac{4}{5}$
(b) $\frac{5}{4}$
(c) $\frac{3}{6}$
(d) $\frac{5}{7}$

Ans. (a) $\frac{4}{5}$
4. If $\triangle A B C \sim \triangle D E F$ and $A B=5 \mathrm{~cm}$, area $\quad(\triangle A B C)=20 \mathrm{~cm}^{2}$, area $(\triangle D E F)=45 \mathrm{~cm}^{2}$, then $\mathrm{DE}=$
(a) $\frac{4}{5} \mathrm{~cm}$
(b) 7.5 cm
(c) 8.5 cm
(d) 7.2 cm

Ans. (b) 7.5 cm
5. A man goes 15 m due west and then 8 m due north. Find distance from the starting point.
(A) $\mathbf{1 7 \mathrm { m }}$
(B) 18 m
(C) 16 m
(D) 7 m

Ans. (A) 17 m
6. In a triangle $\mathbf{A B C}$, if $\mathbf{A B}=\mathbf{1 2} \mathbf{c m}, \mathbf{B C}=\mathbf{1 6} \mathbf{~ c m}, \mathbf{C A}=\mathbf{2 0} \mathbf{c m}$, then $\triangle A B C$ is
(A) Acute angled
(b) Right angled
(c) Isosceles triangle
(d) equilateral triangle

Ans. (b) Right angled
7. In an isosceles triangle $\mathrm{ABC}, \mathrm{AB}=\mathrm{AC}=25 \mathrm{~cm}$ and $\mathrm{BC}=14 \mathrm{~cm}$, then altitude from A on BC $=$
(a) 20 cm
(b) 24 cm
(c) 12 cm
(d) None of these

Ans. (b) 24 cm
8. The side of square who's diagonal is 16 cm is
(a) 16 cm
(b) $8 \sqrt{2} \mathrm{~cm}$
(c) $5 \sqrt{2} \mathrm{~cm}$
(d) None of these

Ans. (b) $8 \sqrt{2} \mathrm{~cm}$
9. In an isosceles triangle $\mathbf{A B C}$, if $\mathbf{A C}=\mathbf{B C}$ and $A B^{2}=2 A C^{2}$, then $\angle C=$
(a) 45°
(b) 60°
(c) 90°
(d) 30°

Ans. (c) 90°
10. If $\triangle A B C \sim \triangle E D F$ and $\triangle A B C$ is not similar to $\triangle D E F$, then which of the following is not true?
(a) $B C \times E F=A C \times F D$
(b) $A B \times E F=A C \times D E$
(c) $B C \times D E=A B \times E F$
(d) $B C \times D E=A B \times F D$

Ans. c) $B C \times D E=A B \times E F$
11. A certain right-angled triangle has its area numerically equal to its perimeter. The length of each side is an even integer, what is the perimeter?
(a) 24 units
(b) 36 units
(c) 32 units
(d) 30 units

Ans. (a) 24 units
12. In the given figure, if $A B \| C D$, then $x=$

(a) 3
(b) 4
(c) 5
(d) 6

Ans. (a) 3
13. Length of an altitude of an equilateral triangle of side ' 2 a ' $\mathbf{c m}$ is
(a) 3 a cm
(b) $\sqrt{3} a \mathrm{~cm}$
(c) $\frac{\sqrt{3}}{2}$ a cm
(d) $2 \sqrt{3} a \mathrm{~cm}$

Ans. (b) $\sqrt{3} a \mathrm{~cm}$
14. If in two triangles $A B C$ and $P Q R, \frac{A B}{Q R}=\frac{B C}{P R}=\frac{C A}{P Q}$
(a) $\triangle P Q R \sim \triangle C A B$
(b) $\triangle P Q R \sim \triangle A B C$
(c) $\triangle C B A \sim \triangle P Q R$
(d) $\triangle B C A \sim \triangle P Q R$

Ans. a) $\triangle P Q R \sim \triangle C A B$
15. The area of two similar triangles are $81 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. If the altitude of the bigger triangle is 4.5 cm , then the corresponding altitude of the smaller triangle is
(a) 2.5 cm
(b) 2.8 cm
(c) 3.5 cm
(d) 3.7 cm

Ans. c) 3.5 cm
16. In a right-angled triangle, if base and perpendicular are respectively 36015 cm and 48020 cm , then the hypotenuse is
(a) 69125 cm
(b) $\mathbf{6 0 0 2 5 \mathrm { cm }}$
(c) 391025 cm
(d) $\mathbf{6 0 1 2 5 \mathrm { cm }}$

Ans. (b) 60025 cm
17. In figure, $\mathbf{D E}|\mid \mathbf{B C}$ and $\mathrm{AD}=\mathbf{1 ~ c m}, \mathbf{B D}=\mathbf{2} \mathbf{m}$. The ratio of the area of $\triangle A B C$ to the area
of $\triangle A D E$ is
(a) $9: 1$
(b) $1: 9$
(c) $3: 1$
(d) none of these

Ans. (a) 9:1
18. In the given figure, $\triangle A B C \sim \triangle P Q R$, then the value of x and y are

(a) $(x, y)=(6,20)$
(b) $(20,60)$
(c) $(x, y)=(3,10)$
(d) none of these

Ans. (b) $(20,60)$
19. In figure, P and Q are points on the sides $A B$ and $A C$ respectively of $\triangle A B C$ such that $\mathrm{AP}=3.5 \mathrm{~cm}, \mathrm{AQ}=3 \mathrm{~cm}$ and $\mathrm{QC}=6 \mathrm{~cm}$. If $\mathrm{PQ}=4.5 \mathrm{~cm}$, then BC is

(a) 12.5 cm
(b) 5.5 cm
(c) 13.5 cm
(d) none of these

Ans. c) 13.5 cm
20. D, E, F are the mid-points of the sides $A B, B C$, and $C A$ respectively of $\triangle A B C$, then $\frac{\operatorname{ar}(\triangle D E F)}{\operatorname{ar}(\triangle A B C)}$ is
(a) $1: 4$
(b) $4: 1$
(c) $1: 2$
(d) none of these

Ans. (a) 1:4

CBSE Class 10 Mathematics

Important Questions

Chapter 6

Triangles

2 Marks Questions

1. In the given figures, $\triangle O D C \sim \triangle O B A, \angle B O C=125^{\circ}$ and $\angle C D O=70^{\circ}$. Find

(i) $\angle D O C$
(ii) $\angle D C O$
(iii) $\angle O A B$
(iv) $\angle A O B$
(v) $\angle O B A$

Ans. (i) $\angle D O C=180^{\circ}-125^{\circ}=55^{\circ}$
(ii) $\angle D C O=180^{\circ}-\left(70^{\circ}+55^{\circ}\right) \quad[\because D O B$ is a st. line and $O C$ stands on it $]$
$=180^{\circ}-125^{\circ}=55^{\circ}\left[\because\right.$ sum of angles of a tringle $\left.=180^{\circ}\right]$
(iii)

$$
\angle D A B=\angle D C O=55^{\circ}
$$

$[\because \triangle O D C \sim O B A($ given $)$
$\therefore \angle D O C=\angle A O B, \angle O D C=\angle O B A, \angle D C O=\angle O A B]$
(iv) $\angle A O B=\angle D O C=55^{\circ}$
(v) $\angle O B A=\angle O D C=70^{\circ}$
2. $\triangle A B C \sim \triangle D E F$ and their areas are respectively $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=\mathbf{1 5 . 4} \mathbf{~ c m}$, find $B C$.

Ans. Since $\triangle A B C \sim \triangle D E F \therefore \frac{\text { area }(\triangle A B C)}{\operatorname{area}(\triangle D E F)}=\frac{B C^{2}}{E F^{2}}$
[\because the ratio of the areas of two similar triangles is equal to the ratio of the squares of the corresponding sides]
$\Rightarrow \frac{64}{121}=\frac{B C^{2}}{(15.4)^{2}}$
$\Rightarrow B C^{2}=\frac{64 \times 154 \times 154}{121 \times 10 \times 10}=\frac{64 \times 14 \times 14}{100}$
$\Rightarrow B C=\frac{8 \times 14}{10}=11.2 \mathrm{~cm}$
3. ABC is an isosceles right triangle right-angled at \mathbf{C}. Prove that $A B^{2}=2 A C^{2}$.

Ans. In right-angled $\triangle A B C$, right $\angle A$ at C
$A B^{2}=A C^{2}+B C^{2}$ [By Pythagoras theorem]
$=A C^{2}+A C^{2}=2 A C^{2} \quad[\because B C=A C($ given $)]$
$=A B^{2}=2 A C^{2}$
4. In the figure, $\mathrm{DE} \| \mathrm{AC}$ and $\frac{B E}{E C}=\frac{B C}{C P}$, prove that

Ans. In $\triangle A B C, D E \| A C$
$\therefore \frac{B D}{D A}=\frac{B E}{E C} \ldots \ldots$ (i) [By Thales's Theorem]
Also $\frac{B E}{E C}=\frac{B C}{C P}$ (given)
\therefore from (i) and (ii), we get
$\frac{B D}{D A}=\frac{B C}{C P} \therefore D C \| A P$ [By the converse of Thales's Theorem]
5. The hypotenuse of a right triangle is 6 m more than the twice of the shortest side. If the third side is 2 m less than the hypotenuse. Find the side of the triangle.

Ans. Let shortest side be $x m$ in length
Then hypotenuse $=(2 x+6) \mathrm{m}$
And third side $=(2 x+4) \mathrm{m}$

We have,
$(2 x+6)^{2}=x^{2}+(2 x+4)^{2}$
$\Rightarrow 4 x^{2}+24 x+36=x^{2}+4 x^{2}+16+16 x$
$\Rightarrow x^{2}-8 x-20=0$
$\Rightarrow x=10$ or $x=-2$
$\Rightarrow x=10$
Hence, the sides of triangle are $10 \mathrm{~m}, 26 \mathrm{~m}$ and 24 m .
6. $P Q R$ is a right triangle right angled at P and M is a point on $Q R$ such that $P M \perp Q R$. Show that $P M^{2}=Q M . M R$.

Ans. $\because P Q R$ is a right triangle right angled at P and $P M \perp Q R$

$\therefore \triangle P M R \sim \triangle P M Q$
$\therefore \frac{P R}{P Q}=\frac{P M}{Q M}=\frac{M R}{P M}$
$\Rightarrow \frac{P M}{Q M}=\frac{M R}{P M}$
i. e., $P M^{2}=Q M \cdot M R$
7. In the given figure, $D E \| O Q$ and $D F \| O R$, Prove that $E F \| O Q$.

Ans. In $\triangle O Q P, D E \| O Q$
$\frac{P E}{E Q}=\frac{P D}{D O}$.
In $\triangle O P R, \mathrm{DF} \| \mathrm{OR}$

$$
\begin{equation*}
\frac{P D}{D O}=\frac{P F}{F R} \tag{ii}
\end{equation*}
$$

From (i) and (ii), we get
$\frac{P E}{E Q}=\frac{P F}{F R}$
\therefore From $\triangle P Q R$,
$E F \| Q R$
8. In figure, $\mathrm{DE} \| \mathrm{BC}$, Find EC.

Ans. $\because D E \| B C$
$\therefore \frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{1.5}{3}=\frac{1}{E C}$
$\therefore E C=2 \mathrm{~cm}$
9. In the given figure, ABC and AMP are two right-angled triangles, right angled at B and M respectively, prove that
(i) $\triangle A B C \sim \triangle A M P$
(ii) $\frac{C A}{P A}=\frac{B C}{M P}$
c

Ans. In $\triangle A B C$ and DAMP,
$\angle B=\angle M\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle A=\angle A($ common $)$
$\therefore \angle A C B=\angle A P M$
$\therefore \Delta S$ are equiangular
i.e., $\triangle A B C \sim \triangle A M P$
$\therefore \frac{B C}{M P}=\frac{C A}{P A}$
10. In the given figure, $\mathrm{OA} \times \mathbf{O B}=\mathbf{O C} \times \mathbf{O D}$ or $\frac{O A}{O C}=\frac{O D}{O B}$, prove that $\angle A=\angle C$ and $\angle B=\angle D$

Ans. In $\triangle A O D$ and $\triangle B O C$,
$O A \times O B=O C \times O D$
i.e $\frac{O A}{O C}=\frac{O D}{O B}$

And $\angle A O D=\angle B O C$ [Vertically opposite Angles]
$\therefore \triangle A O D \sim \triangle B O C[B y S A S]$
$\therefore \angle A=\angle C$ and $\angle B=\angle D$ [Corresponding angles of similar Δ]
11. In the given figure, $\mathrm{DE} \| \mathrm{BC}$ and $\mathrm{AD}=1 \mathrm{~cm}, \mathrm{BD}=2 \mathrm{~cm}$. What is the ratio of the area of $\triangle A B C$ to the area of $\triangle A D E$?

Ans. $\because D E \| B C$ in $\triangle A B C$
$\therefore \angle A D E=\angle A B C$
$\angle A E D=\angle A C B$
Also $\angle D A E=\angle D A C$
$\therefore \triangle A D E \sim \triangle A B C$
$\therefore \triangle A D E \sim \triangle A B C$
$\therefore \frac{A D^{2}}{A B^{2}}=\frac{\operatorname{area}(\triangle A D E)}{\operatorname{area}(\triangle A B C)}$
$\Rightarrow \frac{1^{2}}{3^{2}}=\frac{\operatorname{area}(\triangle A D E)}{\operatorname{area}(\triangle A B C)}[\because A B=A D+O B=1+2=3$

Hence, $\frac{\text { area }(\triangle A B C)}{\text { area }(\triangle A D E)}=\frac{9}{1}$
12. A right-angle triangle has hypotenuse of length $p \mathbf{c m}$ and one side of length $q \mathbf{c m}$. If p $-q=1$, Find the length of third side of the triangle.

Ans. Let third side $=x$ cm
Then by Pythagoras theorem,
$p^{2}=q^{2}+x^{2}$
$x^{2}=p^{2}-q^{2}$
$=(p+q)(p-q)$
$=(p+q) \times 1(\because p-q=1)$
$=q+1+q$
$=2 q+1$
$\therefore x=\sqrt{2 q+1}$
13. The length of the diagonals of a rhombus are 24 cm and 10 cm . Find each side of rhombus.

Ans. $A C=24 \mathrm{~cm} \therefore A O=12 \mathrm{~cm}$
$B D=10 \mathrm{~cm} \therefore O D=5 \mathrm{~cm}$

From right-angled $\triangle A O D$,
$A D^{2}=A O^{2}+O D^{2}$
$\Rightarrow A D^{2}=12^{2}+5^{2}$
$\Rightarrow A D^{2}=169$
$\Rightarrow A D=13 \mathrm{~cm}$

Hence each side $=13 \mathrm{~cm}$
14. In an isosceles right-angled triangle, prove that hypotenuse is $\sqrt{2}$ times the side of a triangle.

Ans. Let hypotenuse of right-angled $\Delta=h$ units and equal sides of triangle x units
\therefore By Pythagoras theorem,
$h^{2}=x^{2}+x^{2}$
$\Rightarrow h^{2}=2 x^{2}$
$\Rightarrow h=\sqrt{2} x$
15. In figure, express x in terms of a, b, c.

Ans. $\triangle A B O \sim \triangle O C D$
$\Rightarrow \frac{x}{a}=\frac{x+b}{c}$
$\Rightarrow x=a x+a b$
$\Rightarrow x(c-a)=a b$
$\Rightarrow x=\frac{a b}{c-a}$
16. The perimeter of two similar triangle $A B C$ and $P Q R$ are respectively 36 cm and 24 cm. If $P Q=10 \mathrm{~cm}$, find $A B$.

Ans. $\triangle A B C \sim \triangle P Q R$
$\therefore \frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}$
$\Rightarrow \frac{A B+B C+A C}{P Q+Q R+P R}=\frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle P Q R}$
$\Rightarrow \frac{A B}{10}=\frac{36}{24}$
$\Rightarrow A B=\frac{36 \times 10}{24}=15 \mathrm{~cm}$
17. In the given figure, $\mathbf{D E} \| \mathbf{B C}$. If $A D=x, D B=x-2, A E=x+2, E C=x-1$ find the value of x.

Ans. In the given figure,
$D E \| B C$
$\therefore \frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{x}{x-2}=\frac{x+2}{x-1}$
$\Rightarrow x^{2}-x=x^{2}-4$
$\Rightarrow x=4$
18. The hypotenuse of a right-angled triangle is $p \mathbf{c m}$ and one of sides is $q \mathbf{c m}$. if $p=q+1$, find the third side in terms of q.

Ans. Let third side be $x \mathrm{~cm}$
$\therefore p^{2}=q^{2}+x^{2}$
Also $p=q+1$.

From (i) and (ii), we get
$(q+1)^{2}=q^{2}+x^{2} \Rightarrow x^{2}=2 q+1$
$\Rightarrow x=\sqrt{2 q+1} \mathrm{~cm}$
19. In the given figure, $\frac{A O}{O C}=\frac{B O}{O D}=\frac{1}{2}$ and $\mathrm{AB}=5 \mathrm{~cm}$, find the value of DC .

Ans. In $\triangle A O B$ and $\triangle C O D$,
$\angle A O B=\angle C O D$ [Vertically opposite angles]
$\frac{A O}{O C}=\frac{B O}{O D} \Rightarrow \frac{A O}{O B}=\frac{O C}{O D}$ [Given]
$\therefore \triangle A O B \sim \triangle C O D$ [By SAS similarity]
$\therefore \frac{A O}{C O}=\frac{B O}{D O}=\frac{A B}{C D}$
$\frac{1}{2}=\frac{A B}{D C}\left[\frac{A O}{O C}=\frac{B O}{O D}=\frac{1}{2}\right.$ is given $]$
$\Rightarrow \frac{1}{2}=\frac{5}{D C}$
$\Rightarrow D C=10 \mathrm{~cm}$
20. In $\triangle A B C, A B=A C$ and D is a point on side $A C$, such that $B C^{2}=A C \times C D$. Prove that $\mathbf{B D}=\mathbf{B C}$.

Ans. Given: $\mathrm{A} \triangle A B C$ in which $\mathrm{AB}=\mathrm{AC}, \mathrm{D}$ is a point on BC

To prove: $\mathrm{BD}=\mathrm{BC}$

Proof: $B C^{2}=A C \times C D$ [given]
$\Rightarrow \frac{B C}{A C}=\frac{D C}{B C}$
In $\triangle A B C$ and $\triangle B D C$,
$\Rightarrow \frac{B C}{C A}=\frac{D C}{C B}$ and $\angle C=\angle C[$ Common $]$
$\therefore \triangle A B C \sim \triangle B D C$ [SAS similarity]
$\Rightarrow \frac{A B}{B D}=\frac{A C}{B C} \Rightarrow \frac{A C}{B D}=\frac{A C}{B C}[\because A B=A C]$
$\Rightarrow B D=B C$

CBSE Class 10 Mathematics

Important Questions

Chapter 6

Triangles

3 Marks Questions

1. In the given figure, $\frac{Q T}{P R}=\frac{Q R}{Q S}$ and $\angle 1=\angle 2$. Prove that
$\triangle P Q S \sim \triangle T Q R$.

Ans. Since $\frac{Q T}{P R}=\frac{Q R}{Q S}$ [Given]
$\therefore \frac{Q T}{Q R}=\frac{P R}{Q S}$
Since $\angle 1=\angle 2$ [Given]
$P Q=P R$.
[In $\triangle P Q R$ sides opposites to opposite angles are equal]
$\therefore \frac{Q T}{Q R}=\frac{P Q}{Q S} \ldots \ldots$. (iii) [Form(i)and (ii)]
Now in $\triangle P Q S$ and $\triangle T Q R$
From (iii), $\frac{P Q}{Q S}=\frac{Q T}{Q R}$ i.e. $\frac{P Q}{Q T}=\frac{Q S}{Q R}$
And $\angle Q=\angle Q$ [Common]
$\therefore \triangle P Q S \sim \triangle T Q R$ [By S.A.S. Rule of similarity]
2. In the given figure, PA, QB and RC are each perpendicular to AC. Prove that $\frac{1}{x}+\frac{1}{2}=\frac{1}{y}$.

Ans. In $\triangle P A C$ and $\triangle Q B C$,
$\angle P A C=\angle Q B C\left[\right.$ Each $\left.=90^{\circ}\right]$
$\angle P C A=\angle Q C B$ [Common]
$\therefore \triangle P A C \sim \triangle Q B C$
$\frac{x}{y}=\frac{A C}{B C}$ i.e. $\frac{y}{x}=\frac{B C}{A C}$.
Similarly, $\frac{z}{y}=\frac{A C}{A B}$ i.e. $\frac{y}{z}=\frac{A B}{A C}$.
Adding (i) and (ii), we get
$\Rightarrow \frac{B C+A B}{A C}=\frac{y}{x}+\frac{y}{z}=y\left(\frac{1}{x}+\frac{1}{z}\right)$
$\Rightarrow \frac{A C}{A C}=y\left(\frac{1}{x}+\frac{1}{z}\right) \Rightarrow 1=\left(\frac{1}{x}+\frac{1}{z}\right)$
$\Rightarrow \frac{1}{y}=\frac{1}{x}+\frac{1}{z}$
3. In the given figure, $\mathbf{D E}\left|\mid \mathbf{B C}\right.$ and $\mathbf{A D}: \mathbf{D B}=\mathbf{5 : 4}$, find $\frac{\text { area }(\triangle D F E)}{\text { area }(\triangle C F B)}$.

Ans. In $\triangle A D E$ and $\triangle A B C$,
$\angle 1=\angle 1$ [Common]
$\angle 2=\angle A C B$ [Corresponding $\angle s$]
$\therefore \triangle A D E \sim \triangle A B C$ [By A.A Rule]
$\therefore \frac{D E}{B C}=\frac{A D}{A B}$
Again in $\triangle D E F$ and $\triangle C F B$,
$\angle 3=\angle 6$ [Alternate $\angle s$]
$\angle 4=\angle 5$ [Vertically opposite $\angle s$]
$\therefore \triangle D F E \sim \triangle C F B$ [By A.A Rule]
$\therefore \frac{\text { Area }(\triangle D F E)}{\text { area }(\triangle C F B)}=\frac{D E^{2}}{B C^{2}}=\left(\frac{A D}{A B}\right)^{2}$ [From (i)]
$=\left(\frac{5}{9}\right)^{2}\left[\because \frac{A D}{D B}=\frac{5}{4} \Rightarrow \frac{A D}{A D+D B}=\frac{5}{5+4} \Rightarrow \frac{A D}{D B}=\frac{5}{9}\right]$
$\therefore \frac{\operatorname{area}(\triangle D F E)}{\operatorname{area}(\triangle C F B)}=\frac{25}{81}$
4. Determine the length of an altitude of an equilateral triangle of side ' 2 a ' $\mathbf{c m}$.

Ans. In right triangles $\triangle A D B$ and $\triangle A D C$,
$A B=A C$
$A D=A D$
$\therefore \angle A D B=\angle A D C \quad\left(\right.$ Each $\left.=90^{\circ}\right)$
$\therefore \triangle A D B \cong \triangle A D C$ (R.HS)
$\therefore B D=D C(C P C T)$
$\therefore B D=D C=a[\because B C=2 a]$
In right $\triangle A D B, A D^{2}+B D^{2}=A B^{2}$ (By Pythagoras Theorem)
$\Rightarrow A D^{2}+a^{2}=(2 a)^{2}$
$\Rightarrow A D^{2}=4 a^{2}-a^{2}=3 a^{2}$
$\Rightarrow A D=\sqrt{3} a \mathrm{~cm}$
5. In the given figure, if $\angle 1=\angle 2$ and $\triangle N S Q \cong \triangle M T R$. Then prove that $\triangle P T S \sim \triangle P R Q$.

Ans. Since $\triangle N S Q \cong \triangle M T R$
$\therefore \angle S Q N=\angle T R M$
$\Rightarrow \angle Q=\angle R($ in $\triangle P Q R)$
$=90^{\circ}-\frac{1}{2} \angle P$
Again $\angle 1=\angle 2$ [given in $\triangle P S T$]
$\therefore \angle 1=\angle 2=\frac{1}{2}\left(180^{\circ}-\angle P\right)$
$=90^{\circ}-\frac{1}{2} \angle P$
Thus, in $\triangle P T S$ and $\triangle P R Q$
$\angle 1=\angle Q\left[\right.$ Each $\left.=90^{\circ}-\frac{1}{2} \angle P\right]$
$\angle 2=\angle R, \angle P=\angle P$ (Common)
$\triangle P T S \sim \triangle P R Q$
6. In the given figure the line segment $\mathrm{XY}|\mid \mathrm{AC}$ and XY divides triangular region ABC into two points equal in area, Determine $\frac{A X}{A B}$.

Ans. Since $X Y \| A C$
$\therefore \angle B X Y=\angle B A C$
$\angle B Y X=\angle B C A$
[Corresponding angles]
$\therefore \triangle B X Y \sim \triangle B A C$ [A.A. similarity]
$\therefore \frac{\operatorname{ar}(\triangle B X Y)}{\operatorname{ar}(\triangle B A C)}=\frac{B X^{2}}{B A^{2}}$
$\operatorname{But} \operatorname{ar}(\triangle B X Y)=\operatorname{ar}(X Y C A)$
$\therefore 2(\triangle B X Y)=\operatorname{ar}(\triangle B X Y)+\operatorname{ar}(X Y C A)$
$=\operatorname{ar}(\triangle B A C)$
$\therefore \frac{\operatorname{ar}(\triangle B X Y)}{\operatorname{ar}(\triangle B A C)}=\frac{1}{2}$
$\therefore \frac{B X^{2}}{B A^{2}}=\frac{1}{2}$
$\Rightarrow \frac{B X}{B A}=\frac{1}{\sqrt{2}}$
$\therefore \frac{B A-B X}{B A}=\frac{\sqrt{2}-1}{\sqrt{2}}$
$\Rightarrow \frac{A X}{A B}=\frac{\sqrt{2}-1}{\sqrt{2}}=\frac{2-\sqrt{2}}{2}$
7. BL and CM are medians of $\triangle A B C$ right angled at A . Prove that $4\left(\mathrm{BL}^{2}+\mathbf{C M}^{2}\right)=5 \mathbf{B C}^{2}$

Ans. BL and CM are medians of a $\triangle A B C$ in which $\angle A=90^{\circ}$
From $\triangle A B C, B C^{2}=A B^{2}+A C^{2}$.
From right angled $\triangle A B L$,
$B L^{2}=A L^{2}+A B^{2}$
i.e. $B L^{2}=\left(\frac{A C}{2}\right)^{2}+A B^{2}$
$\Rightarrow 4 B L^{2}=A C^{2}+4 A B^{2}$.

From right-angled $\triangle C M A$,

$$
C M^{2}=A C^{2}+A M^{2}
$$

i.e. $C M^{2}=A C^{2}+\left(\frac{A B}{2}\right)^{2}$ [Mis mid-point]
$\Rightarrow C M^{2}=A C^{2}+\frac{A B^{2}}{4}$
$\Rightarrow 4 C M^{2}=4 A C^{2}+A B^{2}$
Adding (ii) and (iii), we get
i.e. $4\left(B L^{2}+C M^{2}\right)=5 B C^{2}[$ From (i) $]$
8. ABC is a right triangle right angled at C . Let $\mathrm{BC}=\mathrm{a}, \mathrm{CA}=\mathrm{b}, \mathrm{AB}=\mathrm{c}$ and let p be the length of perpendicular from C on $A B$, prove that
(i) $\mathbf{c p}=\mathbf{a b}$
(ii) $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$

Ans. (i) Draw $C D \perp A B$
Then, $C D=p$
Now ar of $\triangle A B C=\frac{1}{2}(B C \times C A)$ $=\frac{1}{2} a b$
Also area of $\triangle A B C=\frac{1}{2} A B \times C D$
$=\frac{1}{2} c p$
Then, $\frac{1}{2} a b=\frac{1}{2} c p$
$\Rightarrow c p=a b$
(ii) Since $\triangle A B C$ is a right-angled triangle with $\angle C=90^{\circ}$
$\therefore A B^{2}=B C^{2}+A C^{2}$
$\Rightarrow c^{2}=a^{2}+b^{2}$
$\Rightarrow\left(\frac{a b}{p}\right)^{2}=a^{2}+b^{2}$
$\therefore c p=a b$
$\Rightarrow c=\frac{a b}{p}$
$\Rightarrow \frac{1}{p^{2}}=\frac{a^{2}+b^{2}}{a^{2} b^{2}}$
$\Rightarrow \frac{1}{p^{2}}=\frac{1}{b^{2}}+\frac{1}{a^{2}}$
Thus $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
9. In figure, a triangle $A B C$ is right-angled at B. side $B C$ is trisected at points D and E, prove that $8 A E^{2}=3 A C^{2}+5 A D^{2}$

Ans. Given: $\triangle A B C$ is right-angled at B . Side BC is trisected at D and E .
To Prove: $8 A E^{2}=3 A C^{2}+5 A D^{2}$
Proof: D and E are the paints of trisection of BC
$B D=\frac{1}{3} B C$ and $B E=\frac{2}{3} B C$.
In right-angled triangle ABD
$A D^{2}=A B^{2}+B D^{2}$
(ii) [Using Pythagoras theorem]

In $\triangle A B E$,
$A E^{2}=A B^{2}+B E^{2}$.
In $\triangle A B C$,
$A C^{2}=A B^{2}+B C^{2}$
From (ii) and (iii), we have
$A D^{2}-A E^{2}=B D^{2}-B E^{2}$
$\Rightarrow A D^{2}-A E^{2}=\left(\frac{1}{3} B C\right)^{2}-\left(\frac{2}{3} B C\right)^{2}$
$\Rightarrow A D^{2}-A E^{2}=\frac{1}{9} B C^{2}-\frac{4}{9} B C^{2}=\frac{-3}{9} B C^{2}$
$\Rightarrow A E^{2}-A D^{2}=\frac{1}{3} B C^{2}$
From (iii) and (iv), we have
$A C^{2}-A E^{2}=B C^{2}-B E^{2}$
$=B C^{2}-\frac{4}{9} B C^{2}$
$\Rightarrow A C^{2}-A E^{2}=\frac{5}{9} B C^{2}$
From (v) and (vi), we get
$A C^{2}-A E^{2}=\frac{5}{3}\left(A E^{2}-A D^{2}\right)$
$\Rightarrow 3 A C^{2}-3 A E^{2}=5 A E^{2}-5 A D^{2}$
$\Rightarrow 8 A E^{2}=5 A D^{2}+3 A C^{2}$
10. In figure, DEFG is a square and $\angle B A C=90^{\circ}$, show that $D E^{2}=B D \times E C$.

Ans. Given: $\triangle A B C$ is right-angled at A and DEFG is a square
To Prove: $D E^{2}=B D \times E C$
Proof: Let $\angle C=x$.
Then, $\angle A B C=90^{\circ}-x[\because \triangle A B C$ is right angled $]$
Also $\triangle B D G$ is right-angled at D .
$\angle B G D=90^{\circ}-\left(90^{\circ}-x\right)=x$.

From (i) and (ii), we get
$\angle B G D=\angle C$

Consider $\triangle B D G$ and $\triangle C E F$
$\angle C E F=\angle B D G=90[\because D E F G$ is square $]$
$\angle B G D=\angle C$ [From (iii)]
$\therefore \triangle B D G \sim \triangle F E C$ [By AA similarity]
$\therefore \frac{B D}{E F}=\frac{D G}{E C}$
$\Rightarrow E F \times D G=B D \times E C$
But $E F=D G=D E[\because$ side of a square $]$
$\Rightarrow D E \times D E=B D \times E C$
$\Rightarrow D E^{2}=B D \times E C$
11. In a quadrilateral $A B C D, P, Q, R, S$ are the mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Prove that $P Q R S$ is a parallelogram.

Ans. To Prove: PQRS is a parallelogram

Construction: Join AC
Proof: In $\triangle D A C$,
$\frac{D S}{S A}=\frac{D R}{R C}=1[\because S$ and R are mid-points of $A D$ and $D C]$
$\Rightarrow S R \| A C \ldots \ldots$. (i) [by converse of B.P.T]
In $\triangle B A C, \frac{P B}{A P}=\frac{B Q}{Q C}=1[\because \mathrm{P}$ and Q are mid points of AB and BC$]$
$\Rightarrow P Q \| A C \ldots \ldots$. (ii) [By converse of B.P.T]
From (i) and (ii), we get
$S R \| P Q \ldots$. ${ }^{\text {(iii) }}$
Similarly, join B to D and PS||QR
$\Rightarrow \therefore P Q R S$ is a parallelogram.
12. Triangle $A B C$ is right-angled at C and $C D$ is perpendicular to $A B$, prove that $B C^{2} \times A D=A C^{2} \times B D$.

Ans. Given: A $\triangle A B C$ right angled at C and $C D \perp A B$
To Prove: $B C^{2} \times A D=A C^{2} \times B D$
Proof: Consider $\triangle A C D$ and $\triangle D C B$

Let $\angle A=x$
Then $\angle B=90^{\circ}-x[\because \triangle A C B$ is right angled $]$
$\Rightarrow \angle D C B=x[\because \triangle C D B$ is right angled $]$
In $\triangle A D C$ and $\triangle C D B$,
$\angle A D C=\angle C D B\left[90^{\circ}\right.$ each $]$
$\angle A=\angle D C B=x$
$\triangle A C D \sim \triangle C B D$ [By AA similarity]
$\Rightarrow \frac{\operatorname{ar} \triangle A C D}{\operatorname{ar} \triangle C B D}=\frac{A C^{2}}{B C^{2}}$
$\Rightarrow \frac{\frac{1}{2} A D \times C D}{\frac{1}{2} B D \times C D}=\frac{A C^{2}}{B C^{2}}$
$\Rightarrow \frac{A D}{B D}=\frac{A C^{2}}{B C^{2}}$
$\Rightarrow B C^{2} \times A D=A C^{2} \times B D$
13. Triangle $A B C$ is right angled at C and $C D$ is perpendicular to $A B$. Prove that $B C^{2} \times A D=A C^{2} \times B D$.

Ans. Given: $\triangle A B C$ right-angled at C and $C D \perp A B$
To prove: $B C^{2} \times A D=A C^{2} \times B D$

Proof: Consider $\triangle A C D$ and $\triangle D C B$

Let $\angle A=x$
Then $\angle B=90-x[\because \triangle A C B$ is right angled $]$
$\Rightarrow \angle D C B=x[\because \triangle C D B$ is right angled $]$
In $\triangle A D C$ and $\triangle C D B$,
$\angle A D C=\angle C D B\left[90^{\circ}\right.$ each $]$
$\angle A=\angle D C B=x[$ from above $]$
$\therefore \triangle A C D \sim \triangle C B D[$ AA similarity]
$\Rightarrow \frac{\operatorname{ar}(\triangle A C D)}{\operatorname{ar}(\triangle V B D)}=\frac{A C^{2}}{B C^{2}}$
$\Rightarrow \frac{\frac{1}{2} \times A D \times C D}{\frac{1}{2} \times B D \times C D}=\frac{A C^{2}}{B C^{2}}$
$\Rightarrow \frac{A D}{B D}=\frac{A C^{2}}{B C^{2}}$
$\Rightarrow B C^{2} \times A D=A C^{2} \cdot B D$
14. In figure, $A B C$ and $D B C$ are two triangles on the same base $B C$. If $A D$ intersect $E C$ at o, prove that $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}$.

Ans. Given: ABC and DBC are two triangles on the same base BC but on the opposite sides of BC , AD intersects BC at O .

Construction: Draw $A L \perp B C$ and $D M \perp B C$
To prove: $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{E O}$
Proof: In $\triangle A L O$ and $\triangle D M O$,
$\angle A L O=\angle D M O\left[\operatorname{each} 90^{\circ}\right]$
$\angle A O L=\angle D O M$ [Vertically opposite angles]
$\therefore \triangle A L O \sim \triangle D M O$ [By AA similarily]
$\Rightarrow \frac{A L}{D M}=\frac{A O}{D O}$
$\therefore \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}$
15. In figure, ABC is a right triangle right-angled at B . Medians AD and CE are of respective lengths 5 cm and $2 \sqrt{5} \mathrm{~cm}$, find length of AC .

Ans. Given: $\triangle A B C$ with $\angle B=90^{\circ}, \mathrm{AD}$ and CE are medians
To find: Length of AC
Proof: In $\triangle A B D$ right-angled at B ,
$A D^{2}=A B^{2}+B D^{2}$ [By pythagoras theorem]
$=A B^{2}+\left(\frac{1}{2} B C\right)^{2}\left[\because B D=\frac{1}{2} B C\right]$
$=A B^{2}+\frac{1}{4} B C^{2}$
$4 A D^{2}=4 A B^{2}+B C^{2}$

In $\triangle B C E$ right-angled at B
$C E^{2}=B E^{2}+B C^{2}$
$\Rightarrow C E^{2}=\left(\frac{1}{2} A B\right)^{2}+B C^{2}$
$\Rightarrow C E^{2}=\frac{1}{4} A B^{2}+B C^{2}$
$\Rightarrow 4 C E^{2}=A B^{2}+4 B C^{2}$.
$\Rightarrow 4 A D^{2}+4 C E^{2}=5 A B^{2}+5 B C^{2}=5\left(A B^{2}+B C^{2}\right)$
$\Rightarrow 4 A D^{2}+4 C E^{2}=5 A C^{2}$

Given that $\mathrm{AD}=5$ and $C E=2 \sqrt{5}$
$4(5)^{2}+4(2 \sqrt{5})^{2}=5 A C^{2}$
$\Rightarrow 100+80=5 A C^{2}$
$\Rightarrow A C^{2}=\frac{180}{5}$
$\Rightarrow A C^{2}=36 \Rightarrow A C=6 \mathrm{~cm}$
16. In the given figure, $\frac{Q R}{Q S}=\frac{Q T}{P R}$ and $\angle 1=\angle 2$, show that $\triangle P Q S \sim \triangle T Q R$.

Ans. Given: $\frac{Q R}{Q S}=\frac{Q T}{P R}$ and $\angle 1=\angle 2$
Proof: As $\angle 1=\angle 2$
$P Q=P R \ldots \ldots(i)[$ side opposite to equal angles are equal]
Also $\frac{Q R}{Q S}=\frac{Q T}{P R}($ given $)$
$\Rightarrow \frac{Q R}{Q S}=\frac{Q T}{P Q}$ From (i) and (ii)
In $\triangle P Q S$ and TQR, we have
$\frac{Q R}{Q S}=\frac{Q T}{Q P}=\frac{Q S}{Q T} \Rightarrow \frac{Q R}{Q P}[$ From (ii) $]$

Also $\angle P Q S=\angle T Q R$ [common]
$\therefore \triangle P Q S \sim \triangle T Q R[\mathrm{SAS}$ similarity]
17. Given a triangle $A B C$. O is any point inside the triangle $A B C, X, Y, Z$ are points on $O A$, $O B$ and $O C$, such that $X Y \| A B$ and $X Z \| A C$, show that $Y Z \| A C$.

Ans. Given: A $\triangle A B C, O$ is a point inside $\triangle A B C, X, Y$ and Z are points on OA, OB and OC respectively such that $\mathrm{XY} \| \mathrm{AB}$ and $\mathrm{XZ} \| \mathrm{AB}$ and $\mathrm{XZ} \| \mathrm{AC}$

To show: $\mathrm{YZ}|\mid \mathrm{BC}$
Proof: In $\triangle O A B, X Y \| A B$
$\frac{O X}{A X}=\frac{O Y}{B Y} \ldots \ldots . .(i)[B y$ B.P.T]
In $\triangle O A C, X Z \| A C$
$\therefore \frac{O X}{A X}=\frac{O Z}{C Z} \ldots \ldots . .($ ii $)[B y$ B.P.T]
From (i) and (ii), we get $\frac{O Y}{B Y}=\frac{O Z}{C Z}$.
Now in $\triangle O B C \frac{O Y}{B Y}=\frac{O Z}{C Z}($ from(iii) $)$
$\Rightarrow Y Z \| B C$ [Converse of B.P.T]
18. $P Q R$ is a right triangle right angled at Q. If $Q S=S R$, show that $P R^{2}=4 P S^{2}-3 P Q^{2}$

Ans. Given: PQR is a right Triangle, right-angled at Q

Also QS = SR
To prove: $P R^{2}=4 P S^{2}-3 P Q^{2}$
Proof: In right-angled triangle PQR right angled at Q .
$P R^{2}=P Q^{2}+Q R^{2}$ [By Pythagoras theorem]
Also $Q S=\frac{1}{2} Q R[\because Q S=Q R]$

In right-angled triangle PQS, right angled at Q.
$P S^{2}=P Q^{2}+Q S^{2}$
$\Rightarrow P S^{2}=P Q^{2}+\left(\frac{1}{2} Q R\right)^{2}[$ From $(i i)]$
$\Rightarrow 4 P S^{2}=4 P Q^{2}+Q R^{2}$
From (i) and (iii), we get
$P R^{2}=P Q^{2}+4 P S^{2}-4 P Q^{2}$
$\Rightarrow P R^{2}=4 P S^{2}-3 P Q^{2}$
19. A ladder reaches a window which is 12 m above the ground on one side of the street. Keeping its foot at the same point, the ladder is turned to the other side of the street to reach a window 9 m high. Find the width of the street if the length of the ladder is 15 m .
12 m

Ans. Let AB be the width of the street and C be the foot of ladder.

Let D and E be the windows at heights 12 m and 9 m respectively from the ground.
In $\triangle C A D$, right angled at A , we have
$C D^{2}=A C^{2}+A D^{2}$
$\Rightarrow 15^{2}=A C^{2}+12^{2}$
$\Rightarrow A C^{2}=225-144=81$
$\Rightarrow A C=9 \mathrm{~m}$
In $\triangle C B E$, right angled at B , we have
$C E^{2}=B C^{2}+B E^{2}$
$\Rightarrow 15^{2}=B C^{2}+9^{2}$
$\Rightarrow B C^{2}=225-81$
$\Rightarrow B C^{2}=144$
$\Rightarrow B C=12 m$
Hence, width of the street $A B=A C+B C=9+12=21 \mathrm{~m}$
20. In figure, $\frac{X P}{P Y}=\frac{X Q}{Q Z}=3$, if the area of $\Delta X Y Z$ is $32 \mathrm{~cm}^{2}$, then find the area of the quadrilateral PYZQ.

Ans. Given $\frac{X P}{P Y}=\frac{X Q}{Q Z}$ (given)
$\Rightarrow P Q \| Y Z \ldots .$. (i) [By converse of B.P.T]
In $\triangle X P Q$ and $\triangle X Y Z$, we have
[$\angle X P Q=\angle Y$ [From (i) corresponding angles]
$\angle X=\angle X$ [common]
$\therefore \triangle X P Q \sim \triangle X Y Z$ [By AA similarity]
$\therefore \frac{\operatorname{ar}(\triangle X Y Z)}{\operatorname{ar}(\triangle X P Q)}=\frac{X Y^{2}}{X P^{2}}$.
We have $\frac{P Y}{X P}=\frac{1}{3} \Rightarrow \frac{P Y}{X P}+1=\frac{1}{3+1} \Rightarrow \frac{P Y+X P}{X P}=\frac{4}{3}$
$\Rightarrow \frac{X Y}{X P}=\frac{4}{3}$
Substituting in (i), we get
$\frac{\operatorname{ar}(\triangle X Y Z)}{\operatorname{ar}(\triangle X P Q)}=\left(\frac{4}{3}\right)^{2}=\frac{16}{9}$
$\Rightarrow \frac{32}{\operatorname{ar}(X P Q)}=\frac{16}{9}$
$\operatorname{ar}(X P Q)=\frac{32 \times 9}{16}=18 \mathrm{~cm}^{2}$
Area of quadrilateral $P Y Z Q=32-18=14 \mathrm{~cm}^{2}$

CBSE Class 10 Mathematics
 Important Questions
 Chapter 6 Triangles

4 Marks Questions

1. Prove that if a line is drawn parallel to one side of a triangle to intersect the other two sides in district points, ten other two sides are divided in the same ratio. By using this theorem, prove that in $\triangle A B C$ if $D E \| B C$, then $\frac{A D}{B D}=\frac{A E}{A C}$.

Ans. Given: In $\triangle A B C D E \| B C$ intersect AB at D and AC at E .

To Prove: $\frac{A D}{D B}=\frac{A E}{E C}$
Construction: Draw $E F \perp A B$ and $D G \perp A C$ and join $D C$ and BE.
Proof: $\operatorname{ar} \triangle A D E=\frac{1}{2} A D \times E F$
$\operatorname{ar} \triangle D B E=\frac{1}{2} D B \times E F$
$\therefore \frac{a r \Delta A D E}{a r \Delta D B E}=\frac{\frac{1}{2} A D \times E F}{\frac{1}{2} D B \times E F}=\frac{A D}{D B}$.

Similarly, $\frac{\operatorname{ar} \triangle A D E}{\operatorname{ar} \triangle D E C}=\frac{\frac{1}{2} A E \times D G}{\frac{1}{2} E C \times D G}=\frac{A E}{E C}$.
Since $\triangle D B E$ and $\triangle D E C$ are on the same base and between the same parallels
$\therefore \operatorname{ar}(\triangle D B E)=\operatorname{ar}(\triangle D E C)$
$\Rightarrow \frac{1}{\operatorname{ar}(\triangle D B E)}=\frac{1}{\operatorname{ar}(\triangle D E C)}$
$\therefore \frac{\operatorname{ar} \triangle A D E}{\operatorname{ar} \triangle D B F}=\frac{\operatorname{ar} \triangle A D E}{\operatorname{ar} \triangle D F C}$
$\Rightarrow \frac{A D}{D B}=\frac{A B}{E C}$
$\because D E \| B C$
$\frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{A D}{A D+D B}=\frac{A E}{A E+E C}\left[\because \frac{p}{q}=\frac{r}{s} \Rightarrow \frac{p}{p+q}=\frac{r}{r+s}\right]$
$\Rightarrow \frac{A D}{A B}=\frac{A E}{A C}$
2. Prove that the ratio of areas of two similar triangles are in the ratio of the squares of the corresponding sides. By using the above theorem solve in two similar triangles PQR and $L M N, Q R=15 \mathrm{~cm}$ and $M N=10 \mathbf{c m}$. Find the ratio of areas of two triangles.

Ans. Given: Two triangles ABC and DEF
Such that $\triangle A B C \sim \triangle D E F$
To Prove: $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{A B^{2}}{D E^{2}}=\frac{B C^{2}}{E F^{2}}=\frac{A C^{2}}{D F^{2}}$

Construction: Draw $A L \perp B C$ and $D M \perp E F$
Proof: $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{\frac{1}{2}(B C)(A L)}{\frac{1}{2}(E F)(D M)}$
$\left[\because a r\right.$ of $\left.\Delta=\frac{1}{2} b \times h\right]$
$\Rightarrow \frac{\text { Area }(\triangle A B C)}{\text { Area }(\triangle D E F)}=\frac{B C}{E F} \times \frac{A L}{D M}$.

Again, in $\triangle A L B$ and $\triangle D M E$ we have
$\angle A L B=\angle D M E\left[\right.$ Each $\left.=90^{\circ}\right]$
$\angle A B L=\angle D E M\left[\begin{array}{l}\because \triangle A B C \sim \triangle D E F \\ \therefore \angle B=\angle E\end{array}\right]$
$\therefore \triangle A L B-\triangle D M E$ [By AA rule]
$\therefore \frac{A B}{D E}=\frac{A L}{D M}[\because$ Corresponding sides of similar triangles are proportional $]$
Further, $\triangle A B C \sim \triangle D E F$
$\therefore \frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$
From (ii) and (iii),
$\frac{B C}{E F}=\frac{A L}{D M}$
Putting in (i), we get
$\frac{\text { Area }(\triangle A B C)}{\text { Area }(\triangle D E F)}=\frac{A l}{D M} \times \frac{A L}{D M}$
$=\frac{A L^{2}}{D M^{2}}=\frac{A B^{2}}{D E^{2}}$
$=\frac{A C^{2}}{D F^{2}}$
Hence, $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{A B^{2}}{D E^{2}}=\frac{B C^{2}}{E F^{2}}=\frac{A C^{2}}{D F^{2}}$
Since $\triangle P Q R \sim \triangle L M N$
$\therefore \frac{\operatorname{ar}(\triangle P Q R)}{\operatorname{ar}(\triangle L M N)}=\frac{Q R^{2}}{M N^{2}}=\frac{(15)^{2}}{(10)^{2}}$
$=\frac{225}{100}=\frac{9}{4}$
Hence, required ratio is 9:4.
3. Prove that in a right-angled triangle the square of the hypotenuse is equal to the sum
of the squares of the other two sides.Use the above theorem in the given figure to prove that
$P R^{2}=P Q^{2}+Q R^{2}-2 Q M . Q R$

Ans. Given: $\triangle A B C$ right-angled at A
To Prove: $B C^{2}=A B^{2}+A C^{2}$
Construction: Draw $A D \perp B C$ from A to BC
Proof: In $\triangle B A D$ and $\triangle A B C$,
$\angle B=\angle B$ [Common]
$\angle B A C=\angle B D A=90^{\circ}$
$\therefore \triangle B A D \sim \triangle B C A$ [By AA similarity]
$\therefore \frac{A B}{B C}=\frac{B D}{A B}$
$\Rightarrow A B^{2}=B C \times A D$.
Similarly, in $\triangle A D C$ and $\triangle B A C$
$\angle A D C=\angle B A C\left[90^{\circ}\right.$ each $]$
$\angle C=\angle C$ [Common]
$\therefore \triangle A D C \sim \triangle B A C$ [By AA similarity]
$\therefore \frac{D C}{A C}=\frac{A C}{B C}$
$\Rightarrow A C^{2}=D C \times B C$.
(i) + (ii)

$$
\begin{aligned}
A B^{2}+A C^{2} & =B C \times B D+D C \times B C \\
& =B C[B D+D C] \\
& =B C \times B C
\end{aligned}
$$

$\Rightarrow A B^{2}+A C^{2}=B C^{2}$
To Prove: $P R^{2}=P Q^{2}+Q R 2-2 Q M \cdot Q R$
Proof: In $\triangle P M R$
$P R^{2}=P M^{2}+M R^{2}$ [Using above theorem]
$=P M^{2}+(Q R-Q M)^{2}$
$=P M^{2}+Q R^{2}+Q M^{2}-2 Q M . Q M$
$\left(P M^{2}+Q M^{2}\right)+Q R^{2}-2 Q M . Q R$
$=P Q^{2}+Q R^{2}-2 Q M \cdot Q R\left[\because P Q^{2}=Q M^{2}+P M^{2}\right]$
4. Prove that the ratio of areas of two similar triangles is equal to the square of their corresponding sides.Using the above theorem do the following the area of two similar triangles are $81 \mathrm{~cm}^{2}$ and $144 \mathrm{~cm}^{2}$, if the largest side of the smaller triangle is 27 cm , then find the largest side of the largest triangle.

Ans. Given: Two triangles $A B C$ and DEF such that $\triangle A B C \sim \triangle D E F$

To prove: $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{A B^{2}}{D E^{2}}=\frac{B C^{2}}{E F^{2}}=\frac{A C^{2}}{D F^{2}}$
Construction: Draw $A L \perp B C$ and $D M \perp E F$
Proof: Since similar triangles are equiangular and their corresponding sides are proportional
$\therefore \triangle A B C \sim \triangle D E F$
$\Rightarrow \angle A=\angle D, \angle B=\angle E, \angle C=\angle F$
And $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$
In $\triangle A L B$ and $\triangle D M B$,
$\angle 1=\angle 2$ and $\angle B=\angle E$
$\Rightarrow \triangle A L B \sim \triangle D M E$ [By AA similarity]
$\Rightarrow \frac{A L}{D M}=\frac{A B}{D E}$.
From (i) and (ii), we get
$\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}=\frac{A L}{D M}$
Now $\frac{\operatorname{area}(\triangle A B C)}{\operatorname{area}(\triangle D E F)}=\frac{\frac{1}{2}(B C \times A L)}{\frac{1}{2}(B F \times D M)}$
$\Rightarrow \frac{\text { Area }(\triangle A B C)}{\text { Area }(\triangle D E F)}=\frac{B C}{E F} \times \frac{A L}{D M}$
$\Rightarrow \frac{\text { Area }(\triangle A B C)}{\text { Area }(\triangle D E F)}=\frac{B C}{E F} \times \frac{B C}{E F}=\frac{B C^{2}}{E F^{2}}$

Hence, Area $\triangle A B C=\frac{A B^{2}}{\text { Area } \triangle D E F}=\frac{B C^{2}}{E F^{2}}=\frac{A C^{2}}{D F^{2}}$
Let the largest side of the largest triangle be $x \mathrm{~cm}$
Using above theorem,
$\frac{x^{2}}{27^{2}}=\frac{144}{81} \Rightarrow \frac{x}{27}=\frac{12}{9}$
$\Rightarrow x=36 \mathrm{~cm}$
5. In a triangle if the square of one side is equal to the sum of the squares on the other two sides. Prove that the angle apposite to the first side is a right angle.Use the above theorem to find the measure of $\angle P K R$ in figure given below.

Ans. Given: A $\triangle A B C$ such that

$$
A C^{2}=A B^{2}+B C^{2}
$$

To prove: Triangle $A B C$ is right angled at B

Construction: Construct a triangle DEF such that
$D E=A B, E F=B C$ and $E=90^{\circ}$
Proof: $\because \triangle D E F$ is a right angled triangle right angled at E [construction]
\therefore By Pythagoras theorem, we have
$D F^{2}=D E^{2}+E F^{2}$
$\Rightarrow D F^{2}=A B^{2}+B C^{2}[\because D E=A B$ and $E F=B C]$
$\Rightarrow D F^{2}=A C^{2}\left[\because A B^{2}+B C^{2}=A C^{2}\right]$
$\Rightarrow D F^{2}=A C^{2}\left[\because A B^{2}+B C^{2}=A C^{2}\right]$
$\Rightarrow D F=A C$
Thus, in $\triangle A B C$ and $\triangle D E F$, we have

$A B=D E, B C=E F$ and $A C=D F[$ By Construction and (i)]
$\therefore \triangle A B C \cong \triangle D E F$
$\Rightarrow \angle B=\angle E=90^{\circ}$
Hence, $\triangle A B C$ is a right triangle.
In $\triangle Q P R, \angle Q P R=90^{\circ}$
$\Rightarrow 24^{2}+x^{2}=26^{2}$
$\Rightarrow x=10 \Rightarrow P R=10 \mathrm{~cm}$
Now in $\triangle P K R, P R^{2}=P K^{2}+K R^{2}\left[\right.$ as $\left.10^{2}=8^{2}+6^{2}\right]$
$\therefore \triangle P K R$ is right angled at K
$\Rightarrow \angle P K R=90^{\circ}$

Thank You for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES

FREE Webinars by Expert Teachers

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

